Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 4.3
edited by manuelmenendez
on 2025/01/29 19:11
on 2025/01/29 19:11
Change comment:
There is no comment for this version
To version 6.1
edited by manuelmenendez
on 2025/02/01 11:57
on 2025/02/01 11:57
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,6 +1,6 @@ 1 -=== **Overview** === 1 +==== **Overview** ==== 2 2 3 -This sectiondescribesthestep-by-step processusedhe **Neurodiagnoses**projecttodevelopavel diagnosticframework forneurologicaldiseases. The methodology integratesartificial intelligence(AI),biomedicalontologies, andcomputationalneuroscience tocreateastructured,interpretable,and scalable diagnosticsystem.3 +This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**. 4 4 5 5 ---- 6 6 ... ... @@ -8,102 +8,166 @@ 8 8 9 9 ==== **Data Sources** ==== 10 10 11 -* **Biomedical Ontologies**: 12 -** Human Phenotype Ontology (HPO) for phenotypic abnormalities. 13 -** Gene Ontology (GO) for molecular and cellular processes. 14 -* **Neuroimaging Datasets**: 15 -** Example: Alzheimer’s Disease Neuroimaging Initiative (ADNI), OpenNeuro. 16 -* **Clinical and Biomarker Data**: 17 -** Anonymized clinical reports, molecular biomarkers, and test results. 11 +**Biomedical Ontologies & Databases:** 18 18 13 +* **Human Phenotype Ontology (HPO)** for symptom annotation. 14 +* **Gene Ontology (GO)** for molecular and cellular processes. 19 19 20 - ====**DataPreprocessing**====16 +**Dimensionality Reduction and Interpretability:** 21 21 22 -1. **Standardization**: Ensure all data sources are normalized to a common format. 23 -1. **Feature Selection**: Identify relevant features for diagnosis (e.g., biomarkers, imaging scores). 24 -1. **Data Cleaning**: Handle missing values and remove duplicates. 18 +* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 19 +* **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 25 25 21 +**Neuroimaging & EEG/MEG Data:** 22 + 23 +* **MRI volumetric measures** for brain atrophy tracking. 24 +* **EEG functional connectivity patterns** (AI-Mind). 25 + 26 +**Clinical & Biomarker Data:** 27 + 28 +* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 29 +* **Sleep monitoring and actigraphy data** (ADIS). 30 + 31 +**Federated Learning Integration:** 32 + 33 +* **Secure multi-center data harmonization** (PROMINENT). 34 + 26 26 ---- 27 27 37 +==== **Annotation System for Multi-Modal Data** ==== 38 + 39 +To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: 40 + 41 +* **Assign standardized metadata tags** to diagnostic features. 42 +* **Provide contextual explanations** for AI-based classifications. 43 +* **Track temporal disease progression annotations** to identify long-term trends. 44 + 45 +---- 46 + 28 28 === **2. AI-Based Analysis** === 29 29 30 -==== **M odelDevelopment** ====49 +==== **Machine Learning & Deep Learning Models** ==== 31 31 32 -* **Embedding Models**: Use pre-trained models like BioBERT or BioLORD for text data. 33 -* **Classification Models**: 34 -** Algorithms: Random Forest, Support Vector Machines (SVM), or neural networks. 35 -** Purpose: Predict the likelihood of specific neurological conditions based on input data. 51 +**Risk Prediction Models:** 36 36 37 - ====**DimensionalityReductionandInterpretability**====53 +* **LETHE’s cognitive risk prediction model** integrated into the annotation framework. 38 38 39 -* Leverage [[DEIBO>>https://drive.ebrains.eu/f/8d7157708cde4b258db0/]] (Data-driven Embedding Interpretation Based on Ontologies) to connect model dimensions to ontology concepts. 40 -* Evaluate interpretability using metrics like the Area Under the Interpretability Curve (AUIC). 55 +**Biomarker Classification & Probabilistic Imputation:** 41 41 57 +* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. 58 + 59 +**Neuroimaging Feature Extraction:** 60 + 61 +* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 62 + 63 +==== **AI-Powered Annotation System** ==== 64 + 65 +* Uses **SHAP-based interpretability tools** to explain model decisions. 66 +* Generates **automated clinical annotations** in structured reports. 67 +* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 68 + 42 42 ---- 43 43 44 -=== **3. Diagnostic Framework** === 71 +=== **3. Diagnostic Framework & Clinical Decision Support** === 45 45 46 -==== ** AxesfDiagnosis** ====73 +==== **Tridimensional Diagnostic Axes** ==== 47 47 48 - The framework organizesdiagnosticdatainto threeaxes:75 +**Axis 1: Etiology (Pathogenic Mechanisms)** 49 49 50 -1. **Etiology**: Genetic and environmental risk factors. 51 -1. **Molecular Markers**: Biomarkers such as amyloid-beta, tau, and alpha-synuclein. 52 -1. **Neuroanatomical Correlations**: Results from neuroimaging (e.g., MRI, PET). 77 +* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 78 +* **AI-assisted annotation** provides **causal interpretations** for clinical use. 53 53 54 - ====**RecommendationSystem**====80 +**Axis 2: Molecular Markers & Biomarkers** 55 55 56 -* Suggestsadditionaltestsor biomarkersif gaps are detected in the data.57 -* Prioritizestests basedonclinicalimpactcost-effectiveness.82 +* **Integration of CSF, blood, and neuroimaging biomarkers**. 83 +* **Structured annotation** highlights **biological pathways linked to diagnosis**. 58 58 85 +**Axis 3: Neuroanatomoclinical Correlations** 86 + 87 +* **MRI and EEG data** provide anatomical and functional insights. 88 +* **AI-generated progression maps** annotate **brain structure-function relationships**. 89 + 59 59 ---- 60 60 61 -=== **4. Computational Workflow** === 92 +=== **4. Computational Workflow & Annotation Pipelines** === 62 62 63 -1. **Data Loading**: Import data from storage (Drive or Bucket). 64 -1. **Feature Engineering**: Generate derived features from the raw data. 65 -1. **Model Training**: 66 -1*. Split data into training, validation, and test sets. 67 -1*. Train models with cross-validation to ensure robustness. 68 -1. **Evaluation**: 69 -1*. Metrics: Accuracy, F1-Score, AUIC for interpretability. 70 -1*. Compare against baseline models and domain benchmarks. 94 +==== **Data Processing Steps** ==== 71 71 96 +**Data Ingestion:** 97 + 98 +* **Harmonized datasets** stored in **EBRAINS Bucket**. 99 +* **Preprocessing pipelines** clean and standardize data. 100 + 101 +**Feature Engineering:** 102 + 103 +* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 104 + 105 +**AI-Generated Annotations:** 106 + 107 +* **Automated tagging** of diagnostic features in **structured reports**. 108 +* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 109 + 110 +**Clinical Decision Support Integration:** 111 + 112 +* **AI-annotated findings** fed into **interactive dashboards**. 113 +* **Clinicians can adjust, validate, and modify annotations**. 114 + 72 72 ---- 73 73 74 -=== **5. Validation** === 117 +=== **5. Validation & Real-World Testing** === 75 75 76 -==== ** InternalValidation** ====119 +==== **Prospective Clinical Study** ==== 77 77 78 -* Test the system using simulated datasets and known clinical cases. 79 -* Fine-tune models based on validation results. 121 +* **Multi-center validation** of AI-based **annotations & risk stratifications**. 122 +* **Benchmarking against clinician-based diagnoses**. 123 +* **Real-world testing** of AI-powered **structured reporting**. 80 80 81 -==== ** ExternalValidation** ====125 +==== **Quality Assurance & Explainability** ==== 82 82 83 -* Collaborate with research institutionsandhospitals totesthesysteminreal-worldsettings.84 -* Use anonymized patientdatansureprivacycompliance.127 +* **Annotations linked to structured knowledge graphs** for improved transparency. 128 +* **Interactive annotation editor** allows clinicians to validate AI outputs. 85 85 86 86 ---- 87 87 88 88 === **6. Collaborative Development** === 89 89 90 -The project is open to contributions from researchers, clinicians, and developers. Key tools include:134 +The project is **open to contributions** from **researchers, clinicians, and developers**. 91 91 136 +**Key tools include:** 137 + 92 92 * **Jupyter Notebooks**: For data analysis and pipeline development. 93 -** Example: [[probabilistic imputation>>https://drive.ebrains.eu/f/4f69ab52f7734ef48217/]]139 +** Example: **probabilistic imputation** 94 94 * **Wiki Pages**: For documenting methods and results. 95 95 * **Drive and Bucket**: For sharing code, data, and outputs. 96 -* **Collaboration with related projects: **For instance: [[//Beyond the hype: AI in dementia – from early risk detection to disease treatment//>>https://www.lethe-project.eu/beyond-the-hype-ai-in-dementia-from-early-risk-detection-to-disease-treatment/]] 142 +* **Collaboration with related projects**: 143 +** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 97 97 98 98 ---- 99 99 100 100 === **7. Tools and Technologies** === 101 101 102 -* **Programming Languages**: Python for AI and data processing. 103 -* **Frameworks**: 104 -** TensorFlow and PyTorch for machine learning. 105 -** Flask or FastAPI for backend services. 106 -* **Visualization**: Plotly and Matplotlib for interactive and static visualizations. 107 -* **EBRAINS Services**: 108 -** Collaboratory Lab for running Notebooks. 109 -** Buckets for storing large datasets. 149 +==== **Programming Languages:** ==== 150 + 151 +* **Python** for AI and data processing. 152 + 153 +==== **Frameworks:** ==== 154 + 155 +* **TensorFlow** and **PyTorch** for machine learning. 156 +* **Flask** or **FastAPI** for backend services. 157 + 158 +==== **Visualization:** ==== 159 + 160 +* **Plotly** and **Matplotlib** for interactive and static visualizations. 161 + 162 +==== **EBRAINS Services:** ==== 163 + 164 +* **Collaboratory Lab** for running Notebooks. 165 +* **Buckets** for storing large datasets. 166 + 167 +---- 168 + 169 +=== **Why This Matters** === 170 + 171 +* **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.** 172 +* **It enables real-time tracking of disease progression across the three diagnostic axes.** 173 +* **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.**