Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 6.1
edited by manuelmenendez
on 2025/02/01 11:57
Change comment: There is no comment for this version
To version 17.1
edited by manuelmenendez
on 2025/02/09 13:01
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,173 +1,154 @@
1 -==== **Overview** ====
1 +== **Overview** ==
2 2  
3 -This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**.
3 +Neurodiagnoses develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility.**
4 4  
5 -----
5 +This methodology integrates **multi-modal data**, including:
6 +**Genetic data** (whole-genome sequencing, polygenic risk scores).
7 +**Neuroimaging** (MRI, PET, EEG, MEG).
8 +**Neurophysiological data** (EEG-based biomarkers, sleep actigraphy).
9 +**CSF & Blood Biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
6 6  
7 -=== **1. Data Integration** ===
11 +By applying **machine learning models**, Neurodiagnoses generates **structured, explainable diagnostic outputs** to assist **clinical decision-making** and **biomarker-driven patient stratification.**
8 8  
9 -==== **Data Sources** ====
13 +----
10 10  
11 -**Biomedical Ontologies & Databases:**
15 +== **Data Integration & External Databases** ==
12 12  
13 -* **Human Phenotype Ontology (HPO)** for symptom annotation.
14 -* **Gene Ontology (GO)** for molecular and cellular processes.
17 +=== **How to Use External Databases in Neurodiagnoses** ===
15 15  
16 -**Dimensionality Reduction and Interpretability:**
19 +Neurodiagnoses integrates data from multiple **biomedical and neurological research databases**. Researchers can follow these steps to **access, prepare, and integrate** data into the Neurodiagnoses framework.
17 17  
18 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**.
19 -* **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts.
21 +**Potential Data Sources**
22 +**Reference:** [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]
20 20  
21 -**Neuroimaging & EEG/MEG Data:**
24 +=== **Register for Access** ===
22 22  
23 -* **MRI volumetric measures** for brain atrophy tracking.
24 -* **EEG functional connectivity patterns** (AI-Mind).
26 +Each **external database** requires **individual registration** and approval.
27 +✔️ Follow the official **data access guidelines** of each provider.
28 +✔️ Ensure compliance with **ethical approvals** and **data-sharing agreements (DUAs).**
25 25  
26 -**Clinical & Biomarker Data:**
30 +=== **Download & Prepare Data** ===
27 27  
28 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
29 -* **Sleep monitoring and actigraphy data** (ADIS).
32 +Once access is granted, download datasets **following compliance guidelines** and **format requirements** for integration.
30 30  
31 -**Federated Learning Integration:**
34 +**Supported File Formats**
32 32  
33 -* **Secure multi-center data harmonization** (PROMINENT).
36 +* **Tabular Data**: .csv, .tsv
37 +* **Neuroimaging Data**: .nii, .dcm
38 +* **Genomic Data**: .fasta, .vcf
39 +* **Clinical Metadata**: .json, .xml
34 34  
35 -----
41 +**Mandatory Fields for Integration**
36 36  
37 -==== **Annotation System for Multi-Modal Data** ====
43 +|=**Field Name**|=**Description**
44 +|**Subject ID**|Unique patient identifier
45 +|**Diagnosis**|Standardized disease classification
46 +|**Biomarkers**|CSF, plasma, or imaging biomarkers
47 +|**Genetic Data**|Whole-genome or exome sequencing
48 +|**Neuroimaging Metadata**|MRI/PET acquisition parameters
38 38  
39 -To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will:
50 +=== **Upload Data to Neurodiagnoses** ===
40 40  
41 -* **Assign standardized metadata tags** to diagnostic features.
42 -* **Provide contextual explanations** for AI-based classifications.
43 -* **Track temporal disease progression annotations** to identify long-term trends.
52 +**Option 1:** Upload to **EBRAINS Bucket** → [[Neurodiagnoses Data Storage>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]]
53 +**Option 2:** Contribute via **GitHub Repository** → [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]]
44 44  
45 -----
55 +**For large datasets, please contact project administrators before uploading.**
46 46  
47 -=== **2. AI-Based Analysis** ===
57 +=== **Integrate Data into AI Models** ===
48 48  
49 -==== **Machine Learning & Deep Learning Models** ====
59 +Use **Jupyter Notebooks** on EBRAINS for **data preprocessing.**
60 +Standardize data using **harmonization tools.**
61 +Train AI models with **newly integrated datasets.**
50 50  
51 -**Risk Prediction Models:**
63 +**Reference:** [[Data Processing Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]]
52 52  
53 -* **LETHE’s cognitive risk prediction model** integrated into the annotation framework.
65 +----
54 54  
55 -**Biomarker Classification & Probabilistic Imputation:**
67 +== **AI-Powered Annotation & Machine Learning Models** ==
56 56  
57 -* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**.
69 +Neurodiagnoses applies **advanced machine learning models** to classify CNS diseases, extract features from **biomarkers and neuroimaging**, and provide **AI-powered annotation.**
58 58  
59 -**Neuroimaging Feature Extraction:**
71 +=== **AI Model Categories** ===
60 60  
61 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**.
73 +|=**Model Type**|=**Function**|=**Example Algorithms**
74 +|**Probabilistic Diagnosis**|Assigns probability scores to multiple CNS disorders.|Random Forest, XGBoost, Bayesian Networks
75 +|**Tridimensional Diagnosis**|Classifies disorders based on Etiology, Biomarkers, and Neuroanatomical Correlations.|CNNs, Transformers, Autoencoders
76 +|**Biomarker Prediction**|Predicts missing biomarker values using regression.|KNN Imputation, Bayesian Estimation
77 +|**Neuroimaging Feature Extraction**|Extracts patterns from MRI, PET, EEG.|CNNs, Graph Neural Networks
78 +|**Clinical Decision Support**|Generates AI-driven diagnostic reports.|SHAP Explainability Tools
62 62  
63 -==== **AI-Powered Annotation System** ====
80 +**Reference:** [[AI Model Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/models.md]]
64 64  
65 -* Uses **SHAP-based interpretability tools** to explain model decisions.
66 -* Generates **automated clinical annotations** in structured reports.
67 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**).
68 -
69 69  ----
70 70  
71 -=== **3. Diagnostic Framework & Clinical Decision Support** ===
84 +== **Clinical Decision Support & Tridimensional Diagnostic Framework** ==
72 72  
73 -==== **Tridimensional Diagnostic Axes** ====
86 +Neurodiagnoses generates **structured AI reports** for clinicians, combining:
74 74  
75 -**Axis 1: Etiology (Pathogenic Mechanisms)**
88 +**Probabilistic Diagnosis:** AI-generated ranking of potential diagnoses.
89 +**Tridimensional Classification:** Standardized diagnostic reports based on:
76 76  
77 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**.
78 -* **AI-assisted annotation** provides **causal interpretations** for clinical use.
91 +1. **Axis 1:** **Etiology** → Genetic, Autoimmune, Prion, Toxic, Vascular.
92 +1. **Axis 2:** **Molecular Markers** → CSF, Neuroinflammation, EEG biomarkers.
93 +1. **Axis 3:** **Neuroanatomoclinical Correlations** → MRI atrophy, PET.
79 79  
80 -**Axis 2: Molecular Markers & Biomarkers**
95 +**Reference:** [[Tridimensional Classification Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/classification.md]]
81 81  
82 -* **Integration of CSF, blood, and neuroimaging biomarkers**.
83 -* **Structured annotation** highlights **biological pathways linked to diagnosis**.
84 -
85 -**Axis 3: Neuroanatomoclinical Correlations**
86 -
87 -* **MRI and EEG data** provide anatomical and functional insights.
88 -* **AI-generated progression maps** annotate **brain structure-function relationships**.
89 -
90 90  ----
91 91  
92 -=== **4. Computational Workflow & Annotation Pipelines** ===
99 +== **Data Security, Compliance & Federated Learning** ==
93 93  
94 -==== **Data Processing Steps** ====
101 +✔ **Privacy-Preserving AI**: Implements **Federated Learning**, ensuring that patient data **never leaves** local institutions.
102 +✔ **Secure Data Access**: Data remains **stored in EBRAINS MIP servers** using **differential privacy techniques.**
103 +✔ **Ethical & GDPR Compliance**: Data-sharing agreements **must be signed** before use.
95 95  
96 -**Data Ingestion:**
105 +**Reference:** [[Data Protection & Federated Learning>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/security.md]]
97 97  
98 -* **Harmonized datasets** stored in **EBRAINS Bucket**.
99 -* **Preprocessing pipelines** clean and standardize data.
100 -
101 -**Feature Engineering:**
102 -
103 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**.
104 -
105 -**AI-Generated Annotations:**
106 -
107 -* **Automated tagging** of diagnostic features in **structured reports**.
108 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions.
109 -
110 -**Clinical Decision Support Integration:**
111 -
112 -* **AI-annotated findings** fed into **interactive dashboards**.
113 -* **Clinicians can adjust, validate, and modify annotations**.
114 -
115 115  ----
116 116  
117 -=== **5. Validation & Real-World Testing** ===
109 +== **Data Processing & Integration with Clinica.Run** ==
118 118  
119 -==== **Prospective Clinical Study** ====
111 +Neurodiagnoses now supports **Clinica.Run**, an **open-source neuroimaging platform** for **multimodal data processing.**
120 120  
121 -* **Multi-center validation** of AI-based **annotations & risk stratifications**.
122 -* **Benchmarking against clinician-based diagnoses**.
123 -* **Real-world testing** of AI-powered **structured reporting**.
113 +=== **How It Works** ===
124 124  
125 -==== **Quality Assurance & Explainability** ====
115 +✔ **Neuroimaging Preprocessing**: MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines.**
116 +✔ **Automated Biomarker Extraction**: Extracts volumetric, metabolic, and functional biomarkers.
117 +✔ **Data Security & Compliance**: Clinica.Run is **GDPR & HIPAA-compliant.**
126 126  
127 -* **Annotations linked to structured knowledge graphs** for improved transparency.
128 -* **Interactive annotation editor** allows clinicians to validate AI outputs.
119 +=== **Implementation Steps** ===
129 129  
130 -----
121 +1. Install **Clinica.Run** dependencies.
122 +1. Configure **Clinica.Run pipeline** in clinica_run_config.json.
123 +1. Run **biomarker extraction pipelines** for AI-based diagnostics.
131 131  
132 -=== **6. Collaborative Development** ===
125 +**Reference:** [[Clinica.Run Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/clinica_run.md]]
133 133  
134 -The project is **open to contributions** from **researchers, clinicians, and developers**.
135 -
136 -**Key tools include:**
137 -
138 -* **Jupyter Notebooks**: For data analysis and pipeline development.
139 -** Example: **probabilistic imputation**
140 -* **Wiki Pages**: For documenting methods and results.
141 -* **Drive and Bucket**: For sharing code, data, and outputs.
142 -* **Collaboration with related projects**:
143 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment**
144 -
145 145  ----
146 146  
147 -=== **7. Tools and Technologies** ===
129 +== **Collaborative Development & Research** ==
148 148  
149 -==== **Programming Languages:** ====
131 +**We Use GitHub to Develop AI Models & Store Research Data**
150 150  
151 -* **Python** for AI and data processing.
133 +* **GitHub Repository:** AI model training scripts.
134 +* **GitHub Issues:** Tracks ongoing research questions.
135 +* **GitHub Wiki:** Project documentation & user guides.
152 152  
153 -==== **Frameworks:** ====
137 +**We Use EBRAINS for Data & Collaboration**
154 154  
155 -* **TensorFlow** and **PyTorch** for machine learning.
156 -* **Flask** or **FastAPI** for backend services.
139 +* **EBRAINS Buckets:** Large-scale neuroimaging and biomarker storage.
140 +* **EBRAINS Jupyter Notebooks:** Cloud-based AI model execution.
141 +* **EBRAINS Wiki:** Research documentation and updates.
157 157  
158 -==== **Visualization:** ====
143 +**Join the Project Forum:** [[GitHub Discussions>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]
159 159  
160 -* **Plotly** and **Matplotlib** for interactive and static visualizations.
145 +----
161 161  
162 -==== **EBRAINS Services:** ====
147 +**For Additional Documentation:**
163 163  
164 -* **Collaboratory Lab** for running Notebooks.
165 -* **Buckets** for storing large datasets.
149 +* **GitHub Repository:** [[Neurodiagnoses AI Models>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]]
150 +* **EBRAINS Wiki:** [[Neurodiagnoses Research Collaboration>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]]
166 166  
167 167  ----
168 168  
169 -=== **Why This Matters** ===
170 -
171 -* **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.**
172 -* **It enables real-time tracking of disease progression across the three diagnostic axes.**
173 -* **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.**
154 +**Neurodiagnoses is Open for Contributions – Join Us Today!**