Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 6.1
edited by manuelmenendez
on 2025/02/01 11:57
Change comment: There is no comment for this version
To version 18.1
edited by manuelmenendez
on 2025/02/13 12:52
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,173 +1,133 @@
1 -==== **Overview** ====
1 +== **Overview** ==
2 2  
3 -This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**.
3 +Neurodiagnoses develops a tridimensional diagnostic framework for CNS diseases, incorporating AI-powered annotation tools to improve interpretability, standardization, and clinical utility. The methodology integrates multi-modal data, including genetic, neuroimaging, neurophysiological, and biomarker datasets, and applies machine learning models to generate structured, explainable diagnostic outputs.
4 4  
5 5  ----
6 6  
7 -=== **1. Data Integration** ===
7 +== **How to Use External Databases in Neurodiagnoses** ==
8 8  
9 -==== **Data Sources** ====
9 +To enhance the accuracy of our diagnostic models, Neurodiagnoses integrates data from multiple biomedical and neurological research databases. If you are a researcher, follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework.
10 10  
11 -**Biomedical Ontologies & Databases:**
11 +=== **Potential Data Sources** ===
12 12  
13 -* **Human Phenotype Ontology (HPO)** for symptom annotation.
14 -* **Gene Ontology (GO)** for molecular and cellular processes.
13 +Neurodiagnoses maintains an updated list of potential biomedical databases relevant to neurodegenerative diseases.
15 15  
16 -**Dimensionality Reduction and Interpretability:**
15 +* Reference: [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]
17 17  
18 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**.
19 -* **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts.
17 +=== **1. Register for Access** ===
20 20  
21 -**Neuroimaging & EEG/MEG Data:**
19 +Each external database requires individual registration and access approval. Follow the official guidelines of each database provider.
22 22  
23 -* **MRI volumetric measures** for brain atrophy tracking.
24 -* **EEG functional connectivity patterns** (AI-Mind).
21 +* Ensure that you have completed all ethical approvals and data access agreements before integrating datasets into Neurodiagnoses.
22 +* Some repositories require a Data Usage Agreement (DUA) before downloading sensitive medical data.
25 25  
26 -**Clinical & Biomarker Data:**
24 +=== **2. Download & Prepare Data** ===
27 27  
28 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
29 -* **Sleep monitoring and actigraphy data** (ADIS).
26 +Once access is granted, download datasets while complying with data usage policies. Ensure that the files meet Neurodiagnoses’ format requirements for smooth integration.
30 30  
31 -**Federated Learning Integration:**
28 +==== **Supported File Formats** ====
32 32  
33 -* **Secure multi-center data harmonization** (PROMINENT).
30 +* Tabular Data: .csv, .tsv
31 +* Neuroimaging Data: .nii, .dcm
32 +* Genomic Data: .fasta, .vcf
33 +* Clinical Metadata: .json, .xml
34 34  
35 -----
35 +==== **Mandatory Fields for Integration** ====
36 36  
37 -==== **Annotation System for Multi-Modal Data** ====
37 +|=Field Name|=Description
38 +|Subject ID|Unique patient identifier
39 +|Diagnosis|Standardized disease classification
40 +|Biomarkers|CSF, plasma, or imaging biomarkers
41 +|Genetic Data|Whole-genome or exome sequencing
42 +|Neuroimaging Metadata|MRI/PET acquisition parameters
38 38  
39 -To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will:
44 +=== **3. Upload Data to Neurodiagnoses** ===
40 40  
41 -* **Assign standardized metadata tags** to diagnostic features.
42 -* **Provide contextual explanations** for AI-based classifications.
43 -* **Track temporal disease progression annotations** to identify long-term trends.
46 +Once preprocessed, data can be uploaded to EBRAINS or GitHub.
44 44  
45 -----
48 +* (((
49 +**Option 1: Upload to EBRAINS Bucket**
46 46  
47 -=== **2. AI-Based Analysis** ===
51 +* Location: [[EBRAINS Neurodiagnoses Bucket>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]]
52 +* Ensure correct metadata tagging before submission.
53 +)))
54 +* (((
55 +**Option 2: Contribute via GitHub Repository**
48 48  
49 -==== **Machine Learning & Deep Learning Models** ====
57 +* Location: [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]]
58 +* Create a new folder under /data/ and include dataset description.
59 +)))
50 50  
51 -**Risk Prediction Models:**
61 +//Note: For large datasets, please contact the project administrators before uploading.//
52 52  
53 -* **LETHE’s cognitive risk prediction model** integrated into the annotation framework.
63 +=== **4. Integrate Data into AI Models** ===
54 54  
55 -**Biomarker Classification & Probabilistic Imputation:**
65 +Once uploaded, datasets must be harmonized and formatted before AI model training.
56 56  
57 -* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**.
67 +==== **Steps for Data Integration** ====
58 58  
59 -**Neuroimaging Feature Extraction:**
69 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts.
70 +* Standardize neuroimaging and biomarker formats using harmonization tools.
71 +* Use machine learning models to handle missing data and feature extraction.
72 +* Train AI models with newly integrated patient cohorts.
73 +* Reference: [[Detailed instructions can be found in docs/data_processing.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]].
60 60  
61 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**.
62 -
63 -==== **AI-Powered Annotation System** ====
64 -
65 -* Uses **SHAP-based interpretability tools** to explain model decisions.
66 -* Generates **automated clinical annotations** in structured reports.
67 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**).
68 -
69 69  ----
70 70  
71 -=== **3. Diagnostic Framework & Clinical Decision Support** ===
77 +== **Database Sources Table** ==
72 72  
73 -==== **Tridimensional Diagnostic Axes** ====
79 +=== **Where to Insert This** ===
74 74  
75 -**Axis 1: Etiology (Pathogenic Mechanisms)**
81 +* GitHub: [[docs/data_sources.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_sources.md]]
82 +* EBRAINS Wiki: Collabs/neurodiagnoses/Data Sources
76 76  
77 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**.
78 -* **AI-assisted annotation** provides **causal interpretations** for clinical use.
84 +=== **Key Databases for Neurodiagnoses** ===
79 79  
80 -**Axis 2: Molecular Markers & Biomarkers**
86 +|=Database|=Focus Area|=Data Type|=Access Link
87 +|ADNI|Alzheimer's Disease|MRI, PET, CSF, cognitive tests|ADNI
88 +|PPMI|Parkinson’s Disease|Imaging, biospecimens|[[PPMI>>url:https://www.ppmi-info.org/]]
89 +|GP2|Genetic Data for PD|Whole-genome sequencing|[[GP2>>url:https://gp2.org/]]
90 +|Enroll-HD|Huntington’s Disease|Clinical, genetic, imaging|[[Enroll-HD>>url:https://enroll-hd.org/]]
91 +|GAAIN|Alzheimer's & Cognitive Decline|Multi-source data aggregation|[[GAAIN>>url:https://www.gaain.org/]]
92 +|UK Biobank|Population-wide studies|Genetic, imaging, health records|[[UK Biobank>>url:https://www.ukbiobank.ac.uk/]]
93 +|DPUK|Dementia & Aging|Imaging, genetics, lifestyle factors|[[DPUK>>url:https://www.dementiasplatform.uk/]]
94 +|PRION Registry|Prion Diseases|Clinical and genetic data|[[PRION Registry>>url:https://www.prionalliance.org/]]
95 +|DECIPHER|Rare Genetic Disorders|Genomic variants|DECIPHER
81 81  
82 -* **Integration of CSF, blood, and neuroimaging biomarkers**.
83 -* **Structured annotation** highlights **biological pathways linked to diagnosis**.
97 +If you know a relevant dataset, submit a proposal in [[GitHub Issues>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]].
84 84  
85 -**Axis 3: Neuroanatomoclinical Correlations**
86 -
87 -* **MRI and EEG data** provide anatomical and functional insights.
88 -* **AI-generated progression maps** annotate **brain structure-function relationships**.
89 -
90 90  ----
91 91  
92 -=== **4. Computational Workflow & Annotation Pipelines** ===
101 +== **Collaboration & Partnerships** ==
93 93  
94 -==== **Data Processing Steps** ====
103 +=== **Where to Insert This** ===
95 95  
96 -**Data Ingestion:**
105 +* GitHub: [[docs/collaboration.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/collaboration.md]]
106 +* EBRAINS Wiki: Collabs/neurodiagnoses/Collaborations
97 97  
98 -* **Harmonized datasets** stored in **EBRAINS Bucket**.
99 -* **Preprocessing pipelines** clean and standardize data.
108 +=== **Partnering with Data Providers** ===
100 100  
101 -**Feature Engineering:**
110 +Beyond using existing datasets, Neurodiagnoses seeks partnerships with data repositories to:
102 102  
103 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**.
112 +* Enable direct API-based data integration for real-time processing.
113 +* Co-develop harmonized AI-ready datasets with standardized annotations.
114 +* Secure funding opportunities through joint grant applications.
104 104  
105 -**AI-Generated Annotations:**
116 +=== **Interested in Partnering?** ===
106 106  
107 -* **Automated tagging** of diagnostic features in **structured reports**.
108 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions.
118 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements.
109 109  
110 -**Clinical Decision Support Integration:**
120 +* Contact: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
111 111  
112 -* **AI-annotated findings** fed into **interactive dashboards**.
113 -* **Clinicians can adjust, validate, and modify annotations**.
114 -
115 115  ----
116 116  
117 -=== **5. Validation & Real-World Testing** ===
124 +== **Final Notes** ==
118 118  
119 -==== **Prospective Clinical Study** ====
126 +Neurodiagnoses continuously expands its data ecosystem to support AI-driven clinical decision-making. Researchers and institutions are encouraged to contribute new datasets and methodologies.
120 120  
121 -* **Multi-center validation** of AI-based **annotations & risk stratifications**.
122 -* **Benchmarking against clinician-based diagnoses**.
123 -* **Real-world testing** of AI-powered **structured reporting**.
128 +For additional technical documentation:
124 124  
125 -==== **Quality Assurance & Explainability** ====
130 +* [[GitHub Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]]
131 +* [[EBRAINS Collaboration Page>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]]
126 126  
127 -* **Annotations linked to structured knowledge graphs** for improved transparency.
128 -* **Interactive annotation editor** allows clinicians to validate AI outputs.
129 -
130 -----
131 -
132 -=== **6. Collaborative Development** ===
133 -
134 -The project is **open to contributions** from **researchers, clinicians, and developers**.
135 -
136 -**Key tools include:**
137 -
138 -* **Jupyter Notebooks**: For data analysis and pipeline development.
139 -** Example: **probabilistic imputation**
140 -* **Wiki Pages**: For documenting methods and results.
141 -* **Drive and Bucket**: For sharing code, data, and outputs.
142 -* **Collaboration with related projects**:
143 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment**
144 -
145 -----
146 -
147 -=== **7. Tools and Technologies** ===
148 -
149 -==== **Programming Languages:** ====
150 -
151 -* **Python** for AI and data processing.
152 -
153 -==== **Frameworks:** ====
154 -
155 -* **TensorFlow** and **PyTorch** for machine learning.
156 -* **Flask** or **FastAPI** for backend services.
157 -
158 -==== **Visualization:** ====
159 -
160 -* **Plotly** and **Matplotlib** for interactive and static visualizations.
161 -
162 -==== **EBRAINS Services:** ====
163 -
164 -* **Collaboratory Lab** for running Notebooks.
165 -* **Buckets** for storing large datasets.
166 -
167 -----
168 -
169 -=== **Why This Matters** ===
170 -
171 -* **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.**
172 -* **It enables real-time tracking of disease progression across the three diagnostic axes.**
173 -* **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.**
133 +If you experience issues integrating data, open a [[GitHub Issue>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]] or consult the EBRAINS Neurodiagnoses Forum.