Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 6.1
edited by manuelmenendez
on 2025/02/01 11:57
on 2025/02/01 11:57
Change comment:
There is no comment for this version
To version 18.1
edited by manuelmenendez
on 2025/02/13 12:52
on 2025/02/13 12:52
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,173 +1,133 @@ 1 -== ==**Overview** ====1 +== **Overview** == 2 2 3 - This projectdevelops a**tridimensional diagnostic framework**for**CNS diseases**, incorporating**AI-powered annotation tools**to improve**interpretability, standardization, and clinical utility**. The methodology integrates**multi-modal data**, including**genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies**machine learning models**to generate**structured, explainable diagnostic outputs**.3 +Neurodiagnoses develops a tridimensional diagnostic framework for CNS diseases, incorporating AI-powered annotation tools to improve interpretability, standardization, and clinical utility. The methodology integrates multi-modal data, including genetic, neuroimaging, neurophysiological, and biomarker datasets, and applies machine learning models to generate structured, explainable diagnostic outputs. 4 4 5 5 ---- 6 6 7 -== =**1.DataIntegration** ===7 +== **How to Use External Databases in Neurodiagnoses** == 8 8 9 - ====**DataSources**====9 +To enhance the accuracy of our diagnostic models, Neurodiagnoses integrates data from multiple biomedical and neurological research databases. If you are a researcher, follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework. 10 10 11 -** BiomedicalOntologies &Databases:**11 +=== **Potential Data Sources** === 12 12 13 -* **Human Phenotype Ontology (HPO)** for symptom annotation. 14 -* **Gene Ontology (GO)** for molecular and cellular processes. 13 +Neurodiagnoses maintains an updated list of potential biomedical databases relevant to neurodegenerative diseases. 15 15 16 -* *DimensionalityReductionInterpretability:**15 +* Reference: [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 17 17 18 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 19 -* **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 17 +=== **1. Register for Access** === 20 20 21 - **Neuroimaging&EEG/MEGData:**19 +Each external database requires individual registration and access approval. Follow the official guidelines of each database provider. 22 22 23 -* **MRIvolumetricmeasures**forbrain atrophytracking.24 -* **EEGfunctionalconnectivitypatterns**(AI-Mind).21 +* Ensure that you have completed all ethical approvals and data access agreements before integrating datasets into Neurodiagnoses. 22 +* Some repositories require a Data Usage Agreement (DUA) before downloading sensitive medical data. 25 25 26 -** Clinical &Biomarker Data:**24 +=== **2. Download & Prepare Data** === 27 27 28 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 29 -* **Sleep monitoring and actigraphy data** (ADIS). 26 +Once access is granted, download datasets while complying with data usage policies. Ensure that the files meet Neurodiagnoses’ format requirements for smooth integration. 30 30 31 -** FederatedLearning Integration:**28 +==== **Supported File Formats** ==== 32 32 33 -* **Secure multi-center data harmonization** (PROMINENT). 30 +* Tabular Data: .csv, .tsv 31 +* Neuroimaging Data: .nii, .dcm 32 +* Genomic Data: .fasta, .vcf 33 +* Clinical Metadata: .json, .xml 34 34 35 - ----35 +==== **Mandatory Fields for Integration** ==== 36 36 37 -==== **Annotation System for Multi-Modal Data** ==== 37 +|=Field Name|=Description 38 +|Subject ID|Unique patient identifier 39 +|Diagnosis|Standardized disease classification 40 +|Biomarkers|CSF, plasma, or imaging biomarkers 41 +|Genetic Data|Whole-genome or exome sequencing 42 +|Neuroimaging Metadata|MRI/PET acquisition parameters 38 38 39 - Toensure**structuredintegration ofdiversedatasets**,**Neurodiagnoses**will implement an **AI-driven annotation system**, which will:44 +=== **3. Upload Data to Neurodiagnoses** === 40 40 41 -* **Assign standardized metadata tags** to diagnostic features. 42 -* **Provide contextual explanations** for AI-based classifications. 43 -* **Track temporal disease progression annotations** to identify long-term trends. 46 +Once preprocessed, data can be uploaded to EBRAINS or GitHub. 44 44 45 ----- 48 +* ((( 49 +**Option 1: Upload to EBRAINS Bucket** 46 46 47 -=== **2. AI-Based Analysis** === 51 +* Location: [[EBRAINS Neurodiagnoses Bucket>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]] 52 +* Ensure correct metadata tagging before submission. 53 +))) 54 +* ((( 55 +**Option 2: Contribute via GitHub Repository** 48 48 49 -==== **Machine Learning & Deep Learning Models** ==== 57 +* Location: [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]] 58 +* Create a new folder under /data/ and include dataset description. 59 +))) 50 50 51 - **RiskPredictionModels:**61 +//Note: For large datasets, please contact the project administrators before uploading.// 52 52 53 - ***LETHE’scognitiveisk prediction model**integratedintotheannotation framework.63 +=== **4. Integrate Data into AI Models** === 54 54 55 - **BiomarkerClassification&ProbabilisticImputation:**65 +Once uploaded, datasets must be harmonized and formatted before AI model training. 56 56 57 - ***KNN Imputer** and **Bayesianmodels** usedforhandling**missingbiomarker data**.67 +==== **Steps for Data Integration** ==== 58 58 59 -**Neuroimaging Feature Extraction:** 69 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 70 +* Standardize neuroimaging and biomarker formats using harmonization tools. 71 +* Use machine learning models to handle missing data and feature extraction. 72 +* Train AI models with newly integrated patient cohorts. 73 +* Reference: [[Detailed instructions can be found in docs/data_processing.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]]. 60 60 61 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 62 - 63 -==== **AI-Powered Annotation System** ==== 64 - 65 -* Uses **SHAP-based interpretability tools** to explain model decisions. 66 -* Generates **automated clinical annotations** in structured reports. 67 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 68 - 69 69 ---- 70 70 71 -== =**3.Diagnostic Framework & Clinical DecisionSupport** ===77 +== **Database Sources Table** == 72 72 73 -=== =**TridimensionalDiagnosticAxes** ====79 +=== **Where to Insert This** === 74 74 75 -**Axis 1: Etiology (Pathogenic Mechanisms)** 81 +* GitHub: [[docs/data_sources.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_sources.md]] 82 +* EBRAINS Wiki: Collabs/neurodiagnoses/Data Sources 76 76 77 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 78 -* **AI-assisted annotation** provides **causal interpretations** for clinical use. 84 +=== **Key Databases for Neurodiagnoses** === 79 79 80 -**Axis 2: Molecular Markers & Biomarkers** 86 +|=Database|=Focus Area|=Data Type|=Access Link 87 +|ADNI|Alzheimer's Disease|MRI, PET, CSF, cognitive tests|ADNI 88 +|PPMI|Parkinson’s Disease|Imaging, biospecimens|[[PPMI>>url:https://www.ppmi-info.org/]] 89 +|GP2|Genetic Data for PD|Whole-genome sequencing|[[GP2>>url:https://gp2.org/]] 90 +|Enroll-HD|Huntington’s Disease|Clinical, genetic, imaging|[[Enroll-HD>>url:https://enroll-hd.org/]] 91 +|GAAIN|Alzheimer's & Cognitive Decline|Multi-source data aggregation|[[GAAIN>>url:https://www.gaain.org/]] 92 +|UK Biobank|Population-wide studies|Genetic, imaging, health records|[[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 93 +|DPUK|Dementia & Aging|Imaging, genetics, lifestyle factors|[[DPUK>>url:https://www.dementiasplatform.uk/]] 94 +|PRION Registry|Prion Diseases|Clinical and genetic data|[[PRION Registry>>url:https://www.prionalliance.org/]] 95 +|DECIPHER|Rare Genetic Disorders|Genomic variants|DECIPHER 81 81 82 -* **Integration of CSF, blood, and neuroimaging biomarkers**. 83 -* **Structured annotation** highlights **biological pathways linked to diagnosis**. 97 +If you know a relevant dataset, submit a proposal in [[GitHub Issues>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]]. 84 84 85 -**Axis 3: Neuroanatomoclinical Correlations** 86 - 87 -* **MRI and EEG data** provide anatomical and functional insights. 88 -* **AI-generated progression maps** annotate **brain structure-function relationships**. 89 - 90 90 ---- 91 91 92 -== =**4.ComputationalWorkflow&AnnotationPipelines** ===101 +== **Collaboration & Partnerships** == 93 93 94 -=== =**Data ProcessingSteps** ====103 +=== **Where to Insert This** === 95 95 96 -**Data Ingestion:** 105 +* GitHub: [[docs/collaboration.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/collaboration.md]] 106 +* EBRAINS Wiki: Collabs/neurodiagnoses/Collaborations 97 97 98 -* **Harmonized datasets** stored in **EBRAINS Bucket**. 99 -* **Preprocessing pipelines** clean and standardize data. 108 +=== **Partnering with Data Providers** === 100 100 101 - **FeatureEngineering:**110 +Beyond using existing datasets, Neurodiagnoses seeks partnerships with data repositories to: 102 102 103 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 112 +* Enable direct API-based data integration for real-time processing. 113 +* Co-develop harmonized AI-ready datasets with standardized annotations. 114 +* Secure funding opportunities through joint grant applications. 104 104 105 -** AI-GeneratedAnnotations:**116 +=== **Interested in Partnering?** === 106 106 107 -* **Automated tagging** of diagnostic features in **structured reports**. 108 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 118 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 109 109 110 -* *Clinical DecisionSupport Integration:**120 +* Contact: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 111 111 112 -* **AI-annotated findings** fed into **interactive dashboards**. 113 -* **Clinicians can adjust, validate, and modify annotations**. 114 - 115 115 ---- 116 116 117 -== =**5. Validation& Real-WorldTesting** ===124 +== **Final Notes** == 118 118 119 - ==== **ProspectiveClinicalStudy**====126 +Neurodiagnoses continuously expands its data ecosystem to support AI-driven clinical decision-making. Researchers and institutions are encouraged to contribute new datasets and methodologies. 120 120 121 -* **Multi-center validation** of AI-based **annotations & risk stratifications**. 122 -* **Benchmarking against clinician-based diagnoses**. 123 -* **Real-world testing** of AI-powered **structured reporting**. 128 +For additional technical documentation: 124 124 125 -==== **Quality Assurance & Explainability** ==== 130 +* [[GitHub Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]] 131 +* [[EBRAINS Collaboration Page>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]] 126 126 127 -* **Annotations linked to structured knowledge graphs** for improved transparency. 128 -* **Interactive annotation editor** allows clinicians to validate AI outputs. 129 - 130 ----- 131 - 132 -=== **6. Collaborative Development** === 133 - 134 -The project is **open to contributions** from **researchers, clinicians, and developers**. 135 - 136 -**Key tools include:** 137 - 138 -* **Jupyter Notebooks**: For data analysis and pipeline development. 139 -** Example: **probabilistic imputation** 140 -* **Wiki Pages**: For documenting methods and results. 141 -* **Drive and Bucket**: For sharing code, data, and outputs. 142 -* **Collaboration with related projects**: 143 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 144 - 145 ----- 146 - 147 -=== **7. Tools and Technologies** === 148 - 149 -==== **Programming Languages:** ==== 150 - 151 -* **Python** for AI and data processing. 152 - 153 -==== **Frameworks:** ==== 154 - 155 -* **TensorFlow** and **PyTorch** for machine learning. 156 -* **Flask** or **FastAPI** for backend services. 157 - 158 -==== **Visualization:** ==== 159 - 160 -* **Plotly** and **Matplotlib** for interactive and static visualizations. 161 - 162 -==== **EBRAINS Services:** ==== 163 - 164 -* **Collaboratory Lab** for running Notebooks. 165 -* **Buckets** for storing large datasets. 166 - 167 ----- 168 - 169 -=== **Why This Matters** === 170 - 171 -* **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.** 172 -* **It enables real-time tracking of disease progression across the three diagnostic axes.** 173 -* **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.** 133 +If you experience issues integrating data, open a [[GitHub Issue>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]] or consult the EBRAINS Neurodiagnoses Forum.