Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 6.1
edited by manuelmenendez
on 2025/02/01 11:57
on 2025/02/01 11:57
Change comment:
There is no comment for this version
To version 19.1
edited by manuelmenendez
on 2025/02/14 13:57
on 2025/02/14 13:57
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,173 +1,207 @@ 1 - ====**Overview**====1 +**# Neurodiagnoses AI: Multimodal AI for Neurodiagnostic Predictions** 2 2 3 -This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**. 3 +## **Project Overview** 4 +Neurodiagnoses AI implements AI-driven diagnostic and prognostic models for central nervous system (CNS) disorders, adapting the Florey Dementia Index (FDI) methodology to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs **machine learning models** to provide **explainable, real-time diagnostic insights**.## 4 4 5 ----- 6 +## **How to Use External Databases in Neurodiagnoses** 7 +To enhance diagnostic accuracy, Neurodiagnoses integrates data from multiple biomedical and neurological research databases. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework.## 6 6 7 -=== **1. Data Integration** === 9 +### **Potential Data Sources** 10 +Neurodiagnoses maintains an updated list of potential biomedical databases relevant to neurodegenerative diseases. ## 8 8 9 -==== **Data Sources** ==== 12 +**Reference: List of Potential Databases** 13 +- **ADNI**: Alzheimer's Disease data ([ADNI](https://adni.loni.usc.edu)) 14 +- **PPMI**: Parkinson’s Disease Imaging and biospecimens ([PPMI](https://www.ppmi-info.org)) 15 +- **GP2**: Whole-genome sequencing for PD ([GP2](https://gp2.org)) 16 +- **Enroll-HD**: Huntington’s Disease Clinical and genetic data ([Enroll-HD](https://www.enroll-hd.org)) 17 +- **GAAIN**: Multi-source Alzheimer’s data aggregation ([GAAIN](https://gaain.org)) 18 +- **UK Biobank**: Population-wide genetic, imaging, and health records ([UK Biobank](https://www.ukbiobank.ac.uk)) 19 +- **DPUK**: Dementia and Aging data ([DPUK](https://www.dementiasplatform.uk)) 20 +- **PRION Registry**: Prion Diseases clinical and genetic data ([PRION Registry](https://prionregistry.org)) 21 +- **DECIPHER**: Rare genetic disorder genomic variants ([DECIPHER](https://decipher.sanger.ac.uk)) 10 10 11 -**Biomedical Ontologies & Databases:** 23 +### **1. Register for Access** 24 +- Each external database requires **individual registration** and access approval. 25 +- Ensure compliance with **ethical approvals** and **data usage agreements** before integrating datasets into Neurodiagnoses. 26 +- Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data.## 12 12 13 -* **Human Phenotype Ontology (HPO)** for symptom annotation. 14 -* **Gene Ontology (GO)** for molecular and cellular processes. 28 +### **2. Download & Prepare Data** 29 +- Download datasets while adhering to database usage policies. 30 +- Ensure files meet **Neurodiagnoses format requirements**: 31 + - **Tabular Data**: `.csv`, `.tsv` 32 + - **Neuroimaging Data**: `.nii`, `.dcm` 33 + - **Genomic Data**: `.fasta`, `.vcf` 34 + - **Clinical Metadata**: `.json`, `.xml`## 15 15 16 -**Dimensionality Reduction and Interpretability:** 36 +- **Mandatory Fields for Integration**: 37 + - **Subject ID**: Unique patient identifier 38 + - **Diagnosis**: Standardized disease classification 39 + - **Biomarkers**: CSF, plasma, or imaging biomarkers 40 + - **Genetic Data**: Whole-genome or exome sequencing 41 + - **Neuroimaging Metadata**: MRI/PET acquisition parameters 17 17 18 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 19 -* **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 43 +### **3. Upload Data to Neurodiagnoses** 44 +**Option 1: Upload to EBRAINS Bucket** 45 +- Location: **EBRAINS Neurodiagnoses Bucket** 46 +- Ensure correct **metadata tagging** before submission.## 20 20 21 -**Neuroimaging & EEG/MEG Data:** 48 + **Option 2: Contribute via GitHub Repository** 49 +- Location: **GitHub Data Repository** 50 +- Create a new folder under `/data/` and include a **dataset description**. 51 +- For large datasets, contact project administrators before uploading. 22 22 23 -* **MRI volumetric measures** for brain atrophy tracking. 24 -* **EEG functional connectivity patterns** (AI-Mind). 53 +### **4. Integrate Data into AI Models** 54 +- Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**. 55 +- Standardize **neuroimaging and biomarker formats** using harmonization tools. 56 +- Use **machine learning models** to handle missing data and feature extraction. 57 +- Train AI models with **newly integrated patient cohorts**.## 25 25 26 -** Clinical&BiomarkerData:**59 +**Reference**: See `docs/data_processing.md` for detailed instructions. 27 27 28 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 29 -* **Sleep monitoring and actigraphy data** (ADIS). 61 +## **Collaboration & Partnerships**## 62 +# **Partnering with Data Providers** 63 +Neurodiagnoses seeks partnerships with data repositories to: 64 +- Enable **API-based data integration** for real-time processing. 65 +- Co-develop **harmonized AI-ready datasets** with standardized annotations. 66 +- Secure **funding opportunities** through joint grant applications. 30 30 31 -**Federated Learning Integration:** 68 +**Interested in Partnering?** 69 +- If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 70 +- **Contact**: info@neurodiagnoses.com 32 32 33 -* **Secure multi-center data harmonization** (PROMINENT). 72 +## **Final Notes** 73 +Neurodiagnoses continuously expands its data ecosystem to support AI-driven clinical decision-making. Researchers and institutions are encouraged to contribute **new datasets and methodologies**.## 34 34 35 ----- 75 +For additional technical documentation: 76 +- **GitHub Repository**: [Neurodiagnoses GitHub](https://github.com/neurodiagnoses) 77 +- **EBRAINS Collaboration Page**: [EBRAINS Neurodiagnoses](https://ebrains.eu/collabs/neurodiagnoses) 36 36 37 - ====**AnnotationSystemforMulti-ModalData**====79 +If you experience issues integrating data, **open a GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**. 38 38 39 - Toensure**structuredintegrationof diverse datasets**,**Neurodiagnoses**will implement an **AI-driven annotation system**, which will:81 +== **How to Use External Databases in Neurodiagnoses** == 40 40 41 -* **Assign standardized metadata tags** to diagnostic features. 42 -* **Provide contextual explanations** for AI-based classifications. 43 -* **Track temporal disease progression annotations** to identify long-term trends. 83 +To enhance the accuracy of our diagnostic models, Neurodiagnoses integrates data from multiple biomedical and neurological research databases. If you are a researcher, follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework. 44 44 45 - ----85 +=== **Potential Data Sources** === 46 46 47 - ===**2. AI-BasedAnalysis**===87 +Neurodiagnoses maintains an updated list of potential biomedical databases relevant to neurodegenerative diseases. 48 48 49 - ====**Machine Learning&DeepLearningModels** ====89 +* Reference: [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 50 50 51 -** RiskPredictionModels:**91 +=== **1. Register for Access** === 52 52 53 - * **LETHE’scognitive riskpredictionmodel**integratedinto theannotation framework.93 +Each external database requires individual registration and access approval. Follow the official guidelines of each database provider. 54 54 55 -**Biomarker Classification & Probabilistic Imputation:** 95 +* Ensure that you have completed all ethical approvals and data access agreements before integrating datasets into Neurodiagnoses. 96 +* Some repositories require a Data Usage Agreement (DUA) before downloading sensitive medical data. 56 56 57 - ***KNNImputer** and **Bayesian models** used for handling**missingbiomarkerdata**.98 +=== **2. Download & Prepare Data** === 58 58 59 - **NeuroimagingFeatureExtraction:**100 +Once access is granted, download datasets while complying with data usage policies. Ensure that the files meet Neurodiagnoses’ format requirements for smooth integration. 60 60 61 - ***MRI & EEG data** annotatedwith **neuroanatomical feature labels**.102 +==== **Supported File Formats** ==== 62 62 63 -==== **AI-Powered Annotation System** ==== 104 +* Tabular Data: .csv, .tsv 105 +* Neuroimaging Data: .nii, .dcm 106 +* Genomic Data: .fasta, .vcf 107 +* Clinical Metadata: .json, .xml 64 64 65 -* Uses **SHAP-based interpretability tools** to explain model decisions. 66 -* Generates **automated clinical annotations** in structured reports. 67 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 109 +==== **Mandatory Fields for Integration** ==== 68 68 69 ----- 111 +|=Field Name|=Description 112 +|Subject ID|Unique patient identifier 113 +|Diagnosis|Standardized disease classification 114 +|Biomarkers|CSF, plasma, or imaging biomarkers 115 +|Genetic Data|Whole-genome or exome sequencing 116 +|Neuroimaging Metadata|MRI/PET acquisition parameters 70 70 71 -=== **3. D iagnostic Framework& Clinical DecisionSupport** ===118 +=== **3. Upload Data to Neurodiagnoses** === 72 72 73 - ====**TridimensionalDiagnosticAxes**====120 +Once preprocessed, data can be uploaded to EBRAINS or GitHub. 74 74 75 -**Axis 1: Etiology (Pathogenic Mechanisms)** 122 +* ((( 123 +**Option 1: Upload to EBRAINS Bucket** 76 76 77 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 78 -* **AI-assisted annotation** provides **causal interpretations** for clinical use. 125 +* Location: [[EBRAINS Neurodiagnoses Bucket>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]] 126 +* Ensure correct metadata tagging before submission. 127 +))) 128 +* ((( 129 +**Option 2: Contribute via GitHub Repository** 79 79 80 -**Axis 2: Molecular Markers & Biomarkers** 131 +* Location: [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]] 132 +* Create a new folder under /data/ and include dataset description. 133 +))) 81 81 82 -* **Integration of CSF, blood, and neuroimaging biomarkers**. 83 -* **Structured annotation** highlights **biological pathways linked to diagnosis**. 135 +//Note: For large datasets, please contact the project administrators before uploading.// 84 84 85 -** Axis3: NeuroanatomoclinicalCorrelations**137 +=== **4. Integrate Data into AI Models** === 86 86 87 -* **MRI and EEG data** provide anatomical and functional insights. 88 -* **AI-generated progression maps** annotate **brain structure-function relationships**. 139 +Once uploaded, datasets must be harmonized and formatted before AI model training. 89 89 90 - ----141 +==== **Steps for Data Integration** ==== 91 91 92 -=== **4. Computational Workflow & Annotation Pipelines** === 143 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 144 +* Standardize neuroimaging and biomarker formats using harmonization tools. 145 +* Use machine learning models to handle missing data and feature extraction. 146 +* Train AI models with newly integrated patient cohorts. 147 +* Reference: [[Detailed instructions can be found in docs/data_processing.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]]. 93 93 94 - ==== **Data Processing Steps** ====149 +---- 95 95 96 -**Data Ingestion:**151 +== **Database Sources Table** == 97 97 98 -* **Harmonized datasets** stored in **EBRAINS Bucket**. 99 -* **Preprocessing pipelines** clean and standardize data. 153 +=== **Where to Insert This** === 100 100 101 -**Feature Engineering:** 155 +* GitHub: [[docs/data_sources.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_sources.md]] 156 +* EBRAINS Wiki: Collabs/neurodiagnoses/Data Sources 102 102 103 - ***AI models** extract **clinicallyrelevantpatterns**from**EEG, MRI, andbiomarkers**.158 +=== **Key Databases for Neurodiagnoses** === 104 104 105 -**AI-Generated Annotations:** 160 +|=Database|=Focus Area|=Data Type|=Access Link 161 +|ADNI|Alzheimer's Disease|MRI, PET, CSF, cognitive tests|ADNI 162 +|PPMI|Parkinson’s Disease|Imaging, biospecimens|[[PPMI>>url:https://www.ppmi-info.org/]] 163 +|GP2|Genetic Data for PD|Whole-genome sequencing|[[GP2>>url:https://gp2.org/]] 164 +|Enroll-HD|Huntington’s Disease|Clinical, genetic, imaging|[[Enroll-HD>>url:https://enroll-hd.org/]] 165 +|GAAIN|Alzheimer's & Cognitive Decline|Multi-source data aggregation|[[GAAIN>>url:https://www.gaain.org/]] 166 +|UK Biobank|Population-wide studies|Genetic, imaging, health records|[[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 167 +|DPUK|Dementia & Aging|Imaging, genetics, lifestyle factors|[[DPUK>>url:https://www.dementiasplatform.uk/]] 168 +|PRION Registry|Prion Diseases|Clinical and genetic data|[[PRION Registry>>url:https://www.prionalliance.org/]] 169 +|DECIPHER|Rare Genetic Disorders|Genomic variants|DECIPHER 106 106 107 -* **Automated tagging** of diagnostic features in **structured reports**. 108 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 171 +If you know a relevant dataset, submit a proposal in [[GitHub Issues>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]]. 109 109 110 -**Clinical Decision Support Integration:** 111 - 112 -* **AI-annotated findings** fed into **interactive dashboards**. 113 -* **Clinicians can adjust, validate, and modify annotations**. 114 - 115 115 ---- 116 116 117 -== =**5. Validation &Real-World Testing** ===175 +== **Collaboration & Partnerships** == 118 118 119 -=== =**ProspectiveClinical Study** ====177 +=== **Where to Insert This** === 120 120 121 -* **Multi-center validation** of AI-based **annotations & risk stratifications**. 122 -* **Benchmarking against clinician-based diagnoses**. 123 -* **Real-world testing** of AI-powered **structured reporting**. 179 +* GitHub: [[docs/collaboration.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/collaboration.md]] 180 +* EBRAINS Wiki: Collabs/neurodiagnoses/Collaborations 124 124 125 -=== =**Quality Assurance&Explainability** ====182 +=== **Partnering with Data Providers** === 126 126 127 -* **Annotations linked to structured knowledge graphs** for improved transparency. 128 -* **Interactive annotation editor** allows clinicians to validate AI outputs. 184 +Beyond using existing datasets, Neurodiagnoses seeks partnerships with data repositories to: 129 129 130 ----- 186 +* Enable direct API-based data integration for real-time processing. 187 +* Co-develop harmonized AI-ready datasets with standardized annotations. 188 +* Secure funding opportunities through joint grant applications. 131 131 132 -=== ** 6. CollaborativeDevelopment** ===190 +=== **Interested in Partnering?** === 133 133 134 - Theproject is**openocontributions**from**researchers,clinicians,anddevelopers**.192 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 135 135 136 -* *Keytoolsinclude:**194 +* Contact: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 137 137 138 -* **Jupyter Notebooks**: For data analysis and pipeline development. 139 -** Example: **probabilistic imputation** 140 -* **Wiki Pages**: For documenting methods and results. 141 -* **Drive and Bucket**: For sharing code, data, and outputs. 142 -* **Collaboration with related projects**: 143 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 144 - 145 145 ---- 146 146 147 -== =**7. Toolsand Technologies** ===198 +== **Final Notes** == 148 148 149 - ==== **ProgrammingLanguages:**====200 +Neurodiagnoses continuously expands its data ecosystem to support AI-driven clinical decision-making. Researchers and institutions are encouraged to contribute new datasets and methodologies. 150 150 151 - * **Python** forAIandprocessing.202 +For additional technical documentation: 152 152 153 -==== **Frameworks:** ==== 204 +* [[GitHub Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]] 205 +* [[EBRAINS Collaboration Page>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]] 154 154 155 -* **TensorFlow** and **PyTorch** for machine learning. 156 -* **Flask** or **FastAPI** for backend services. 157 - 158 -==== **Visualization:** ==== 159 - 160 -* **Plotly** and **Matplotlib** for interactive and static visualizations. 161 - 162 -==== **EBRAINS Services:** ==== 163 - 164 -* **Collaboratory Lab** for running Notebooks. 165 -* **Buckets** for storing large datasets. 166 - 167 ----- 168 - 169 -=== **Why This Matters** === 170 - 171 -* **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.** 172 -* **It enables real-time tracking of disease progression across the three diagnostic axes.** 173 -* **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.** 207 +If you experience issues integrating data, open a [[GitHub Issue>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]] or consult the EBRAINS Neurodiagnoses Forum.