Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 6.1
edited by manuelmenendez
on 2025/02/01 11:57
on 2025/02/01 11:57
Change comment:
There is no comment for this version
To version 21.1
edited by manuelmenendez
on 2025/02/14 22:09
on 2025/02/14 22:09
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,173 +1,148 @@ 1 - ====**Overview**====1 +Here is the updated **Methodology** section for the EBRAINS Wiki, incorporating the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)** for **biomarker classification across all neurodegenerative diseases**. 2 2 3 -This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**. 4 - 5 5 ---- 6 6 7 -== =**1. Data Integration** ===5 +== **Neurodiagnoses AI: Multimodal AI for Neurodiagnostic Predictions** == 8 8 9 -=== =**DataSources** ====7 +=== **Project Overview** === 10 10 11 -** BiomedicalOntologies&Databases:**9 +Neurodiagnoses AI implements **AI-driven diagnostic and prognostic models** for central nervous system (CNS) disorders, expanding the **Florey Dementia Index (FDI) methodology** to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs machine learning models to provide **explainable, real-time diagnostic insights**. This framework now incorporates **Neuromarker**, a **generalized biomarker ontology** that categorizes biomarkers across neurodegenerative diseases, enabling **standardized, cross-disease AI training**. 12 12 13 -* **Human Phenotype Ontology (HPO)** for symptom annotation. 14 -* **Gene Ontology (GO)** for molecular and cellular processes. 11 +== **Neuromarker: Generalized Biomarker Ontology** == 15 15 16 - **Dimensionality Reduction and Interpretability:**13 +Neuromarker extends the **Common Alzheimer’s Disease Research Ontology (CADRO)** into a **cross-disease biomarker categorization framework** applicable to all neurodegenerative diseases (NDDs). It allows for **standardized classification, AI-based feature extraction, and multimodal integration**. 17 17 18 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 19 -* **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 15 +=== **Core Biomarker Categories** === 20 20 21 -**Neuroi maging&EEG/MEGData:**17 +The following ontology is used within **Neurodiagnoses AI** for biomarker categorization: 22 22 23 -* **MRI volumetric measures** for brain atrophy tracking. 24 -* **EEG functional connectivity patterns** (AI-Mind). 19 +|=**Category**|=**Description** 20 +|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 21 +|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 22 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL 23 +|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 24 +|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 25 +|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 26 +|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 27 +|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 25 25 26 - **Clinical & Biomarker Data:**29 +---- 27 27 28 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 29 -* **Sleep monitoring and actigraphy data** (ADIS). 31 +== **How to Use External Databases in Neurodiagnoses** == 30 30 31 -** FederatedLearningIntegration:**33 +To enhance diagnostic accuracy, Neurodiagnoses AI integrates data from **multiple biomedical and neurological research databases**. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework. 32 32 33 - ***Secure multi-centerdataharmonization**(PROMINENT).35 +=== **Potential Data Sources** === 34 34 35 - ----37 +Neurodiagnoses maintains an **updated list** of biomedical datasets relevant to neurodegenerative diseases: 36 36 37 -==== **Annotation System for Multi-Modal Data** ==== 39 +* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]] 40 +* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]] 41 +* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]] 42 +* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]] 43 +* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]] 44 +* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 45 +* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]] 46 +* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]] 47 +* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]] 38 38 39 -To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: 40 - 41 -* **Assign standardized metadata tags** to diagnostic features. 42 -* **Provide contextual explanations** for AI-based classifications. 43 -* **Track temporal disease progression annotations** to identify long-term trends. 44 - 45 45 ---- 46 46 47 -== =**2.AI-BasedAnalysis** ===51 +== **1. Register for Access** == 48 48 49 -==== **Machine Learning & Deep Learning Models** ==== 53 +* Each external database requires **individual registration and access approval**. 54 +* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses. 55 +* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data. 50 50 51 - **Risk Prediction Models:**57 +---- 52 52 53 - ***LETHE’scognitive risk prediction model**integratedinto theannotationframework.59 +== **2. Download & Prepare Data** == 54 54 55 -**Biomarker Classification & Probabilistic Imputation:** 61 +* Download datasets while adhering to **database usage policies**. 62 +* Ensure files meet **Neurodiagnoses format requirements**: 56 56 57 -* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. 64 +|=**Data Type**|=**Accepted Formats** 65 +|**Tabular Data**|.csv, .tsv 66 +|**Neuroimaging**|.nii, .dcm 67 +|**Genomic Data**|.fasta, .vcf 68 +|**Clinical Metadata**|.json, .xml 58 58 59 -**Neuroimaging Feature Extraction:** 70 +* **Mandatory Fields for Integration**: 71 +** **Subject ID**: Unique patient identifier 72 +** **Diagnosis**: Standardized disease classification 73 +** **Biomarkers**: CSF, plasma, or imaging biomarkers 74 +** **Genetic Data**: Whole-genome or exome sequencing 75 +** **Neuroimaging Metadata**: MRI/PET acquisition parameters 60 60 61 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 62 - 63 -==== **AI-Powered Annotation System** ==== 64 - 65 -* Uses **SHAP-based interpretability tools** to explain model decisions. 66 -* Generates **automated clinical annotations** in structured reports. 67 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 68 - 69 69 ---- 70 70 71 -== =**3. Diagnostic Framework& Clinical DecisionSupport** ===79 +== **3. Upload Data to Neurodiagnoses** == 72 72 73 -=== =**TridimensionalDiagnosticAxes** ====81 +=== **Option 1: Upload to EBRAINS Bucket** === 74 74 75 -**Axis 1: Etiology (Pathogenic Mechanisms)** 83 +* Location: **EBRAINS Neurodiagnoses Bucket** 84 +* Ensure **correct metadata tagging** before submission. 76 76 77 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 78 -* **AI-assisted annotation** provides **causal interpretations** for clinical use. 86 +=== **Option 2: Contribute via GitHub Repository** === 79 79 80 -**Axis 2: Molecular Markers & Biomarkers** 88 +* Location: **GitHub Data Repository** 89 +* Create a **new folder under /data/** and include a **dataset description**. 90 +* **For large datasets**, contact project administrators before uploading. 81 81 82 -* **Integration of CSF, blood, and neuroimaging biomarkers**. 83 -* **Structured annotation** highlights **biological pathways linked to diagnosis**. 84 - 85 -**Axis 3: Neuroanatomoclinical Correlations** 86 - 87 -* **MRI and EEG data** provide anatomical and functional insights. 88 -* **AI-generated progression maps** annotate **brain structure-function relationships**. 89 - 90 90 ---- 91 91 92 -== =**4.ComputationalWorkflow & AnnotationPipelines** ===94 +== **4. Integrate Data into AI Models** == 93 93 94 -==== **Data Processing Steps** ==== 96 +* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**. 97 +* **Standardize neuroimaging and biomarker formats** using harmonization tools. 98 +* Use **machine learning models** to handle **missing data** and **feature extraction**. 99 +* Train AI models with **newly integrated patient cohorts**. 95 95 96 -** DataIngestion:**101 +**Reference**: See docs/data_processing.md for detailed instructions. 97 97 98 -* **Harmonized datasets** stored in **EBRAINS Bucket**. 99 -* **Preprocessing pipelines** clean and standardize data. 103 +---- 100 100 101 -** FeatureEngineering:**105 +== **AI-Driven Biomarker Categorization** == 102 102 103 - * **AI models**extract**clinicallyrelevant patterns** from**EEG, MRI, andbiomarkers**.107 +Neurodiagnoses employs **AI models** for biomarker classification: 104 104 105 -**AI-Generated Annotations:** 109 +|=**Model Type**|=**Application** 110 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 111 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 112 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 106 106 107 -* **Automated tagging** of diagnostic features in **structured reports**. 108 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 109 - 110 -**Clinical Decision Support Integration:** 111 - 112 -* **AI-annotated findings** fed into **interactive dashboards**. 113 -* **Clinicians can adjust, validate, and modify annotations**. 114 - 115 115 ---- 116 116 117 -== =**5. Validation & Real-WorldTesting**===116 +== [[image:workflow neurodiagnoses.png]] == 118 118 119 -== ==**Prospective ClinicalStudy** ====118 +== **Collaboration & Partnerships** == 120 120 121 -* **Multi-center validation** of AI-based **annotations & risk stratifications**. 122 -* **Benchmarking against clinician-based diagnoses**. 123 -* **Real-world testing** of AI-powered **structured reporting**. 120 +=== **Partnering with Data Providers** === 124 124 125 - ==== **QualityAssurance&Explainability**====122 +Neurodiagnoses seeks partnerships with data repositories to: 126 126 127 -* **Annotations linked to structured knowledge graphs** for improved transparency. 128 -* **Interactive annotation editor** allows clinicians to validate AI outputs. 124 +* Enable **API-based data integration** for real-time processing. 125 +* Co-develop **harmonized AI-ready datasets** with standardized annotations. 126 +* Secure **funding opportunities** through joint grant applications. 129 129 130 - ----128 +**Interested in Partnering?** 131 131 132 -=== **6. Collaborative Development** === 130 +* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**. 131 +* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 133 133 134 -The project is **open to contributions** from **researchers, clinicians, and developers**. 135 - 136 -**Key tools include:** 137 - 138 -* **Jupyter Notebooks**: For data analysis and pipeline development. 139 -** Example: **probabilistic imputation** 140 -* **Wiki Pages**: For documenting methods and results. 141 -* **Drive and Bucket**: For sharing code, data, and outputs. 142 -* **Collaboration with related projects**: 143 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 144 - 145 145 ---- 146 146 147 -== =**7. Toolsand Technologies** ===135 +== **Final Notes** == 148 148 149 - ====**ProgrammingLanguages:**====137 +Neurodiagnoses continuously expands its **data ecosystem** to support **AI-driven clinical decision-making**. Researchers and institutions are encouraged to **contribute new datasets and methodologies**. 150 150 151 -* *Python** forAIandprocessing.139 +**For additional technical documentation**: 152 152 153 -==== **Frameworks:** ==== 141 +* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 142 +* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 154 154 155 -* **TensorFlow** and **PyTorch** for machine learning. 156 -* **Flask** or **FastAPI** for backend services. 144 +**If you experience issues integrating data**, open a **GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**. 157 157 158 -==== **Visualization:** ==== 159 - 160 -* **Plotly** and **Matplotlib** for interactive and static visualizations. 161 - 162 -==== **EBRAINS Services:** ==== 163 - 164 -* **Collaboratory Lab** for running Notebooks. 165 -* **Buckets** for storing large datasets. 166 - 167 167 ---- 168 168 169 -=== **Why This Matters** === 170 - 171 -* **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.** 172 -* **It enables real-time tracking of disease progression across the three diagnostic axes.** 173 -* **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.** 148 +This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders.
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.manuelmenendez - Size
-
... ... @@ -1,0 +1,1 @@ 1 +157.5 KB - Content