Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 6.1
edited by manuelmenendez
on 2025/02/01 11:57
Change comment: There is no comment for this version
To version 21.1
edited by manuelmenendez
on 2025/02/14 22:09
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,173 +1,148 @@
1 -==== **Overview** ====
1 +Here is the updated **Methodology** section for the EBRAINS Wiki, incorporating the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)** for **biomarker classification across all neurodegenerative diseases**.
2 2  
3 -This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**.
4 -
5 5  ----
6 6  
7 -=== **1. Data Integration** ===
5 +== **Neurodiagnoses AI: Multimodal AI for Neurodiagnostic Predictions** ==
8 8  
9 -==== **Data Sources** ====
7 +=== **Project Overview** ===
10 10  
11 -**Biomedical Ontologies & Databases:**
9 +Neurodiagnoses AI implements **AI-driven diagnostic and prognostic models** for central nervous system (CNS) disorders, expanding the **Florey Dementia Index (FDI) methodology** to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs machine learning models to provide **explainable, real-time diagnostic insights**. This framework now incorporates **Neuromarker**, a **generalized biomarker ontology** that categorizes biomarkers across neurodegenerative diseases, enabling **standardized, cross-disease AI training**.
12 12  
13 -* **Human Phenotype Ontology (HPO)** for symptom annotation.
14 -* **Gene Ontology (GO)** for molecular and cellular processes.
11 +== **Neuromarker: Generalized Biomarker Ontology** ==
15 15  
16 -**Dimensionality Reduction and Interpretability:**
13 +Neuromarker extends the **Common Alzheimer’s Disease Research Ontology (CADRO)** into a **cross-disease biomarker categorization framework** applicable to all neurodegenerative diseases (NDDs). It allows for **standardized classification, AI-based feature extraction, and multimodal integration**.
17 17  
18 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**.
19 -* **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts.
15 +=== **Core Biomarker Categories** ===
20 20  
21 -**Neuroimaging & EEG/MEG Data:**
17 +The following ontology is used within **Neurodiagnoses AI** for biomarker categorization:
22 22  
23 -* **MRI volumetric measures** for brain atrophy tracking.
24 -* **EEG functional connectivity patterns** (AI-Mind).
19 +|=**Category**|=**Description**
20 +|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic)
21 +|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein)
22 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL
23 +|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers
24 +|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers
25 +|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS)
26 +|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores
27 +|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities
25 25  
26 -**Clinical & Biomarker Data:**
29 +----
27 27  
28 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
29 -* **Sleep monitoring and actigraphy data** (ADIS).
31 +== **How to Use External Databases in Neurodiagnoses** ==
30 30  
31 -**Federated Learning Integration:**
33 +To enhance diagnostic accuracy, Neurodiagnoses AI integrates data from **multiple biomedical and neurological research databases**. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework.
32 32  
33 -* **Secure multi-center data harmonization** (PROMINENT).
35 +=== **Potential Data Sources** ===
34 34  
35 -----
37 +Neurodiagnoses maintains an **updated list** of biomedical datasets relevant to neurodegenerative diseases:
36 36  
37 -==== **Annotation System for Multi-Modal Data** ====
39 +* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]]
40 +* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]]
41 +* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]]
42 +* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]]
43 +* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]]
44 +* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]]
45 +* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]]
46 +* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]]
47 +* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]]
38 38  
39 -To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will:
40 -
41 -* **Assign standardized metadata tags** to diagnostic features.
42 -* **Provide contextual explanations** for AI-based classifications.
43 -* **Track temporal disease progression annotations** to identify long-term trends.
44 -
45 45  ----
46 46  
47 -=== **2. AI-Based Analysis** ===
51 +== **1. Register for Access** ==
48 48  
49 -==== **Machine Learning & Deep Learning Models** ====
53 +* Each external database requires **individual registration and access approval**.
54 +* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses.
55 +* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data.
50 50  
51 -**Risk Prediction Models:**
57 +----
52 52  
53 -* **LETHE’s cognitive risk prediction model** integrated into the annotation framework.
59 +== **2. Download & Prepare Data** ==
54 54  
55 -**Biomarker Classification & Probabilistic Imputation:**
61 +* Download datasets while adhering to **database usage policies**.
62 +* Ensure files meet **Neurodiagnoses format requirements**:
56 56  
57 -* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**.
64 +|=**Data Type**|=**Accepted Formats**
65 +|**Tabular Data**|.csv, .tsv
66 +|**Neuroimaging**|.nii, .dcm
67 +|**Genomic Data**|.fasta, .vcf
68 +|**Clinical Metadata**|.json, .xml
58 58  
59 -**Neuroimaging Feature Extraction:**
70 +* **Mandatory Fields for Integration**:
71 +** **Subject ID**: Unique patient identifier
72 +** **Diagnosis**: Standardized disease classification
73 +** **Biomarkers**: CSF, plasma, or imaging biomarkers
74 +** **Genetic Data**: Whole-genome or exome sequencing
75 +** **Neuroimaging Metadata**: MRI/PET acquisition parameters
60 60  
61 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**.
62 -
63 -==== **AI-Powered Annotation System** ====
64 -
65 -* Uses **SHAP-based interpretability tools** to explain model decisions.
66 -* Generates **automated clinical annotations** in structured reports.
67 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**).
68 -
69 69  ----
70 70  
71 -=== **3. Diagnostic Framework & Clinical Decision Support** ===
79 +== **3. Upload Data to Neurodiagnoses** ==
72 72  
73 -==== **Tridimensional Diagnostic Axes** ====
81 +=== **Option 1: Upload to EBRAINS Bucket** ===
74 74  
75 -**Axis 1: Etiology (Pathogenic Mechanisms)**
83 +* Location: **EBRAINS Neurodiagnoses Bucket**
84 +* Ensure **correct metadata tagging** before submission.
76 76  
77 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**.
78 -* **AI-assisted annotation** provides **causal interpretations** for clinical use.
86 +=== **Option 2: Contribute via GitHub Repository** ===
79 79  
80 -**Axis 2: Molecular Markers & Biomarkers**
88 +* Location: **GitHub Data Repository**
89 +* Create a **new folder under /data/** and include a **dataset description**.
90 +* **For large datasets**, contact project administrators before uploading.
81 81  
82 -* **Integration of CSF, blood, and neuroimaging biomarkers**.
83 -* **Structured annotation** highlights **biological pathways linked to diagnosis**.
84 -
85 -**Axis 3: Neuroanatomoclinical Correlations**
86 -
87 -* **MRI and EEG data** provide anatomical and functional insights.
88 -* **AI-generated progression maps** annotate **brain structure-function relationships**.
89 -
90 90  ----
91 91  
92 -=== **4. Computational Workflow & Annotation Pipelines** ===
94 +== **4. Integrate Data into AI Models** ==
93 93  
94 -==== **Data Processing Steps** ====
96 +* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**.
97 +* **Standardize neuroimaging and biomarker formats** using harmonization tools.
98 +* Use **machine learning models** to handle **missing data** and **feature extraction**.
99 +* Train AI models with **newly integrated patient cohorts**.
95 95  
96 -**Data Ingestion:**
101 +**Reference**: See docs/data_processing.md for detailed instructions.
97 97  
98 -* **Harmonized datasets** stored in **EBRAINS Bucket**.
99 -* **Preprocessing pipelines** clean and standardize data.
103 +----
100 100  
101 -**Feature Engineering:**
105 +== **AI-Driven Biomarker Categorization** ==
102 102  
103 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**.
107 +Neurodiagnoses employs **AI models** for biomarker classification:
104 104  
105 -**AI-Generated Annotations:**
109 +|=**Model Type**|=**Application**
110 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases
111 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers
112 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data
106 106  
107 -* **Automated tagging** of diagnostic features in **structured reports**.
108 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions.
109 -
110 -**Clinical Decision Support Integration:**
111 -
112 -* **AI-annotated findings** fed into **interactive dashboards**.
113 -* **Clinicians can adjust, validate, and modify annotations**.
114 -
115 115  ----
116 116  
117 -=== **5. Validation & Real-World Testing** ===
116 +== [[image:workflow neurodiagnoses.png]] ==
118 118  
119 -==== **Prospective Clinical Study** ====
118 +== **Collaboration & Partnerships** ==
120 120  
121 -* **Multi-center validation** of AI-based **annotations & risk stratifications**.
122 -* **Benchmarking against clinician-based diagnoses**.
123 -* **Real-world testing** of AI-powered **structured reporting**.
120 +=== **Partnering with Data Providers** ===
124 124  
125 -==== **Quality Assurance & Explainability** ====
122 +Neurodiagnoses seeks partnerships with data repositories to:
126 126  
127 -* **Annotations linked to structured knowledge graphs** for improved transparency.
128 -* **Interactive annotation editor** allows clinicians to validate AI outputs.
124 +* Enable **API-based data integration** for real-time processing.
125 +* Co-develop **harmonized AI-ready datasets** with standardized annotations.
126 +* Secure **funding opportunities** through joint grant applications.
129 129  
130 -----
128 +**Interested in Partnering?**
131 131  
132 -=== **6. Collaborative Development** ===
130 +* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**.
131 +* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
133 133  
134 -The project is **open to contributions** from **researchers, clinicians, and developers**.
135 -
136 -**Key tools include:**
137 -
138 -* **Jupyter Notebooks**: For data analysis and pipeline development.
139 -** Example: **probabilistic imputation**
140 -* **Wiki Pages**: For documenting methods and results.
141 -* **Drive and Bucket**: For sharing code, data, and outputs.
142 -* **Collaboration with related projects**:
143 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment**
144 -
145 145  ----
146 146  
147 -=== **7. Tools and Technologies** ===
135 +== **Final Notes** ==
148 148  
149 -==== **Programming Languages:** ====
137 +Neurodiagnoses continuously expands its **data ecosystem** to support **AI-driven clinical decision-making**. Researchers and institutions are encouraged to **contribute new datasets and methodologies**.
150 150  
151 -* **Python** for AI and data processing.
139 +**For additional technical documentation**:
152 152  
153 -==== **Frameworks:** ====
141 +* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]]
142 +* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]]
154 154  
155 -* **TensorFlow** and **PyTorch** for machine learning.
156 -* **Flask** or **FastAPI** for backend services.
144 +**If you experience issues integrating data**, open a **GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**.
157 157  
158 -==== **Visualization:** ====
159 -
160 -* **Plotly** and **Matplotlib** for interactive and static visualizations.
161 -
162 -==== **EBRAINS Services:** ====
163 -
164 -* **Collaboratory Lab** for running Notebooks.
165 -* **Buckets** for storing large datasets.
166 -
167 167  ----
168 168  
169 -=== **Why This Matters** ===
170 -
171 -* **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.**
172 -* **It enables real-time tracking of disease progression across the three diagnostic axes.**
173 -* **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.**
148 +This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders.
workflow neurodiagnoses.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.manuelmenendez
Size
... ... @@ -1,0 +1,1 @@
1 +157.5 KB
Content