Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 6.1
edited by manuelmenendez
on 2025/02/01 11:57
Change comment: There is no comment for this version
To version 22.1
edited by manuelmenendez
on 2025/02/15 12:55
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,173 +1,106 @@
1 -==== **Overview** ====
1 +**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. Building upon the Florey Dementia Index (FDI) methodology, it now encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)**, which standardizes biomarker classification across all neurodegenerative diseases, facilitating cross-disease AI training.
2 2  
3 -This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**.
3 +**Neuromarker: Generalized Biomarker Ontology**
4 4  
5 -----
5 +Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration.
6 6  
7 -=== **1. Data Integration** ===
7 +**Core Biomarker Categories**
8 8  
9 -==== **Data Sources** ====
9 +Within the Neurodiagnoses AI framework, biomarkers are categorized as follows:
10 10  
11 -**Biomedical Ontologies & Databases:**
11 +|=**Category**|=**Description**
12 +|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic)
13 +|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein)
14 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL
15 +|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers
16 +|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers
17 +|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS)
18 +|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores
19 +|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities
12 12  
13 -* **Human Phenotype Ontology (HPO)** for symptom annotation.
14 -* **Gene Ontology (GO)** for molecular and cellular processes.
21 +**Integrating External Databases into Neurodiagnoses**
15 15  
16 -**Dimensionality Reduction and Interpretability:**
23 +To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps:
17 17  
18 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**.
19 -* **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts.
25 +1. (((
26 +**Register for Access**
20 20  
21 -**Neuroimaging & EEG/MEG Data:**
28 +* Each external database requires individual registration and access approval.
29 +* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses.
30 +* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data.
31 +)))
32 +1. (((
33 +**Download & Prepare Data**
22 22  
23 -* **MRI volumetric measures** for brain atrophy tracking.
24 -* **EEG functional connectivity patterns** (AI-Mind).
35 +* Download datasets while adhering to database usage policies.
36 +* (((
37 +Ensure files meet Neurodiagnoses format requirements:
25 25  
26 -**Clinical & Biomarker Data:**
39 +|=**Data Type**|=**Accepted Formats**
40 +|**Tabular Data**|.csv, .tsv
41 +|**Neuroimaging**|.nii, .dcm
42 +|**Genomic Data**|.fasta, .vcf
43 +|**Clinical Metadata**|.json, .xml
44 +)))
45 +* (((
46 +**Mandatory Fields for Integration**:
27 27  
28 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
29 -* **Sleep monitoring and actigraphy data** (ADIS).
48 +* Subject ID: Unique patient identifier
49 +* Diagnosis: Standardized disease classification
50 +* Biomarkers: CSF, plasma, or imaging biomarkers
51 +* Genetic Data: Whole-genome or exome sequencing
52 +* Neuroimaging Metadata: MRI/PET acquisition parameters
53 +)))
54 +)))
55 +1. (((
56 +**Upload Data to Neurodiagnoses**
30 30  
31 -**Federated Learning Integration:**
58 +* (((
59 +**Option 1: Upload to EBRAINS Bucket**
32 32  
33 -* **Secure multi-center data harmonization** (PROMINENT).
61 +* Location: EBRAINS Neurodiagnoses Bucket
62 +* Ensure correct metadata tagging before submission.
63 +)))
64 +* (((
65 +**Option 2: Contribute via GitHub Repository**
34 34  
35 -----
67 +* Location: GitHub Data Repository
68 +* Create a new folder under /data/ and include a dataset description.
69 +* For large datasets, contact project administrators before uploading.
70 +)))
71 +)))
72 +1. (((
73 +**Integrate Data into AI Models**
36 36  
37 -==== **Annotation System for Multi-Modal Data** ====
75 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts.
76 +* Standardize neuroimaging and biomarker formats using harmonization tools.
77 +* Utilize machine learning models to handle missing data and feature extraction.
78 +* Train AI models with newly integrated patient cohorts.
38 38  
39 -To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will:
80 +**Reference**: See docs/data_processing.md for detailed instructions.
81 +)))
40 40  
41 -* **Assign standardized metadata tags** to diagnostic features.
42 -* **Provide contextual explanations** for AI-based classifications.
43 -* **Track temporal disease progression annotations** to identify long-term trends.
83 +**AI-Driven Biomarker Categorization**
44 44  
45 -----
85 +Neurodiagnoses employs advanced AI models for biomarker classification:
46 46  
47 -=== **2. AI-Based Analysis** ===
87 +|=**Model Type**|=**Application**
88 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases
89 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers
90 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data
48 48  
49 -==== **Machine Learning & Deep Learning Models** ====
92 +**Collaboration & Partnerships**
50 50  
51 -**Risk Prediction Models:**
94 +Neurodiagnoses actively seeks partnerships with data providers to:
52 52  
53 -* **LETHE’s cognitive risk prediction model** integrated into the annotation framework.
96 +* Enable API-based data integration for real-time processing.
97 +* Co-develop harmonized AI-ready datasets with standardized annotations.
98 +* Secure funding opportunities through joint grant applications.
54 54  
55 -**Biomarker Classification & Probabilistic Imputation:**
100 +**Interested in Partnering?**
56 56  
57 -* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**.
102 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements.
58 58  
59 -**Neuroimaging Feature Extraction:**
104 +**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
60 60  
61 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**.
62 -
63 -==== **AI-Powered Annotation System** ====
64 -
65 -* Uses **SHAP-based interpretability tools** to explain model decisions.
66 -* Generates **automated clinical annotations** in structured reports.
67 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**).
68 -
69 -----
70 -
71 -=== **3. Diagnostic Framework & Clinical Decision Support** ===
72 -
73 -==== **Tridimensional Diagnostic Axes** ====
74 -
75 -**Axis 1: Etiology (Pathogenic Mechanisms)**
76 -
77 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**.
78 -* **AI-assisted annotation** provides **causal interpretations** for clinical use.
79 -
80 -**Axis 2: Molecular Markers & Biomarkers**
81 -
82 -* **Integration of CSF, blood, and neuroimaging biomarkers**.
83 -* **Structured annotation** highlights **biological pathways linked to diagnosis**.
84 -
85 -**Axis 3: Neuroanatomoclinical Correlations**
86 -
87 -* **MRI and EEG data** provide anatomical and functional insights.
88 -* **AI-generated progression maps** annotate **brain structure-function relationships**.
89 -
90 -----
91 -
92 -=== **4. Computational Workflow & Annotation Pipelines** ===
93 -
94 -==== **Data Processing Steps** ====
95 -
96 -**Data Ingestion:**
97 -
98 -* **Harmonized datasets** stored in **EBRAINS Bucket**.
99 -* **Preprocessing pipelines** clean and standardize data.
100 -
101 -**Feature Engineering:**
102 -
103 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**.
104 -
105 -**AI-Generated Annotations:**
106 -
107 -* **Automated tagging** of diagnostic features in **structured reports**.
108 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions.
109 -
110 -**Clinical Decision Support Integration:**
111 -
112 -* **AI-annotated findings** fed into **interactive dashboards**.
113 -* **Clinicians can adjust, validate, and modify annotations**.
114 -
115 -----
116 -
117 -=== **5. Validation & Real-World Testing** ===
118 -
119 -==== **Prospective Clinical Study** ====
120 -
121 -* **Multi-center validation** of AI-based **annotations & risk stratifications**.
122 -* **Benchmarking against clinician-based diagnoses**.
123 -* **Real-world testing** of AI-powered **structured reporting**.
124 -
125 -==== **Quality Assurance & Explainability** ====
126 -
127 -* **Annotations linked to structured knowledge graphs** for improved transparency.
128 -* **Interactive annotation editor** allows clinicians to validate AI outputs.
129 -
130 -----
131 -
132 -=== **6. Collaborative Development** ===
133 -
134 -The project is **open to contributions** from **researchers, clinicians, and developers**.
135 -
136 -**Key tools include:**
137 -
138 -* **Jupyter Notebooks**: For data analysis and pipeline development.
139 -** Example: **probabilistic imputation**
140 -* **Wiki Pages**: For documenting methods and results.
141 -* **Drive and Bucket**: For sharing code, data, and outputs.
142 -* **Collaboration with related projects**:
143 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment**
144 -
145 -----
146 -
147 -=== **7. Tools and Technologies** ===
148 -
149 -==== **Programming Languages:** ====
150 -
151 -* **Python** for AI and data processing.
152 -
153 -==== **Frameworks:** ====
154 -
155 -* **TensorFlow** and **PyTorch** for machine learning.
156 -* **Flask** or **FastAPI** for backend services.
157 -
158 -==== **Visualization:** ====
159 -
160 -* **Plotly** and **Matplotlib** for interactive and static visualizations.
161 -
162 -==== **EBRAINS Services:** ====
163 -
164 -* **Collaboratory Lab** for running Notebooks.
165 -* **Buckets** for storing large datasets.
166 -
167 -----
168 -
169 -=== **Why This Matters** ===
170 -
171 -* **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.**
172 -* **It enables real-time tracking of disease progression across the three diagnostic axes.**
173 -* **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.**
106 +
workflow neurodiagnoses.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.manuelmenendez
Size
... ... @@ -1,0 +1,1 @@
1 +157.5 KB
Content