Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 6.1
edited by manuelmenendez
on 2025/02/01 11:57
on 2025/02/01 11:57
Change comment:
There is no comment for this version
To version 22.1
edited by manuelmenendez
on 2025/02/15 12:55
on 2025/02/15 12:55
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,173 +1,106 @@ 1 - ====**Overview**====1 +**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. Building upon the Florey Dementia Index (FDI) methodology, it now encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)**, which standardizes biomarker classification across all neurodegenerative diseases, facilitating cross-disease AI training. 2 2 3 - This project develops a**tridimensional diagnostic framework** for **CNS diseases**, incorporating**AI-powered annotation tools** to improve**interpretability, standardization, and clinical utility**. Themethodologyintegrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarkerdatasets**, and applies **machine learning models** toenerate**structured, explainable diagnostic outputs**.3 +**Neuromarker: Generalized Biomarker Ontology** 4 4 5 -- ---5 +Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration. 6 6 7 - ===**1.DataIntegration**===7 +**Core Biomarker Categories** 8 8 9 - ====**DataSources**====9 +Within the Neurodiagnoses AI framework, biomarkers are categorized as follows: 10 10 11 -**Biomedical Ontologies & Databases:** 11 +|=**Category**|=**Description** 12 +|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 13 +|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 14 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL 15 +|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 16 +|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 17 +|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 18 +|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 19 +|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 12 12 13 -* **Human Phenotype Ontology (HPO)** for symptom annotation. 14 -* **Gene Ontology (GO)** for molecular and cellular processes. 21 +**Integrating External Databases into Neurodiagnoses** 15 15 16 - **Dimensionality ReductionandInterpretability:**23 +To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps: 17 17 18 - ***Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve(AUIC)**.19 -* *Leverage DEIBO (Data-driven Embedding InterpretationBasedonOntologies)** toconnect model dimensionsto ontology concepts.25 +1. ((( 26 +**Register for Access** 20 20 21 -**Neuroimaging & EEG/MEG Data:** 28 +* Each external database requires individual registration and access approval. 29 +* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 30 +* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 31 +))) 32 +1. ((( 33 +**Download & Prepare Data** 22 22 23 -* **MRI volumetric measures** for brain atrophy tracking. 24 -* **EEG functional connectivity patterns** (AI-Mind). 35 +* Download datasets while adhering to database usage policies. 36 +* ((( 37 +Ensure files meet Neurodiagnoses format requirements: 25 25 26 -**Clinical & Biomarker Data:** 39 +|=**Data Type**|=**Accepted Formats** 40 +|**Tabular Data**|.csv, .tsv 41 +|**Neuroimaging**|.nii, .dcm 42 +|**Genomic Data**|.fasta, .vcf 43 +|**Clinical Metadata**|.json, .xml 44 +))) 45 +* ((( 46 +**Mandatory Fields for Integration**: 27 27 28 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 29 -* **Sleep monitoring and actigraphy data** (ADIS). 48 +* Subject ID: Unique patient identifier 49 +* Diagnosis: Standardized disease classification 50 +* Biomarkers: CSF, plasma, or imaging biomarkers 51 +* Genetic Data: Whole-genome or exome sequencing 52 +* Neuroimaging Metadata: MRI/PET acquisition parameters 53 +))) 54 +))) 55 +1. ((( 56 +**Upload Data to Neurodiagnoses** 30 30 31 -**Federated Learning Integration:** 58 +* ((( 59 +**Option 1: Upload to EBRAINS Bucket** 32 32 33 -* **Secure multi-center data harmonization** (PROMINENT). 61 +* Location: EBRAINS Neurodiagnoses Bucket 62 +* Ensure correct metadata tagging before submission. 63 +))) 64 +* ((( 65 +**Option 2: Contribute via GitHub Repository** 34 34 35 ----- 67 +* Location: GitHub Data Repository 68 +* Create a new folder under /data/ and include a dataset description. 69 +* For large datasets, contact project administrators before uploading. 70 +))) 71 +))) 72 +1. ((( 73 +**Integrate Data into AI Models** 36 36 37 -==== **Annotation System for Multi-Modal Data** ==== 75 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 76 +* Standardize neuroimaging and biomarker formats using harmonization tools. 77 +* Utilize machine learning models to handle missing data and feature extraction. 78 +* Train AI models with newly integrated patient cohorts. 38 38 39 -To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: 80 +**Reference**: See docs/data_processing.md for detailed instructions. 81 +))) 40 40 41 -* **Assign standardized metadata tags** to diagnostic features. 42 -* **Provide contextual explanations** for AI-based classifications. 43 -* **Track temporal disease progression annotations** to identify long-term trends. 83 +**AI-Driven Biomarker Categorization** 44 44 45 - ----85 +Neurodiagnoses employs advanced AI models for biomarker classification: 46 46 47 -=== **2. AI-Based Analysis** === 87 +|=**Model Type**|=**Application** 88 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 89 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 90 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 48 48 49 - ====**Machine Learning&Deep Learning Models**====92 +**Collaboration & Partnerships** 50 50 51 - **RiskPredictionModels:**94 +Neurodiagnoses actively seeks partnerships with data providers to: 52 52 53 -* **LETHE’s cognitive risk prediction model** integrated into the annotation framework. 96 +* Enable API-based data integration for real-time processing. 97 +* Co-develop harmonized AI-ready datasets with standardized annotations. 98 +* Secure funding opportunities through joint grant applications. 54 54 55 -** BiomarkerClassification&Probabilistic Imputation:**100 +**Interested in Partnering?** 56 56 57 - * **KNNImputer** and**Bayesianmodels** usedforhandling**missingbiomarker data**.102 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 58 58 59 -** Neuroimaging Feature Extraction:**104 +**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 60 60 61 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 62 - 63 -==== **AI-Powered Annotation System** ==== 64 - 65 -* Uses **SHAP-based interpretability tools** to explain model decisions. 66 -* Generates **automated clinical annotations** in structured reports. 67 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 68 - 69 ----- 70 - 71 -=== **3. Diagnostic Framework & Clinical Decision Support** === 72 - 73 -==== **Tridimensional Diagnostic Axes** ==== 74 - 75 -**Axis 1: Etiology (Pathogenic Mechanisms)** 76 - 77 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 78 -* **AI-assisted annotation** provides **causal interpretations** for clinical use. 79 - 80 -**Axis 2: Molecular Markers & Biomarkers** 81 - 82 -* **Integration of CSF, blood, and neuroimaging biomarkers**. 83 -* **Structured annotation** highlights **biological pathways linked to diagnosis**. 84 - 85 -**Axis 3: Neuroanatomoclinical Correlations** 86 - 87 -* **MRI and EEG data** provide anatomical and functional insights. 88 -* **AI-generated progression maps** annotate **brain structure-function relationships**. 89 - 90 ----- 91 - 92 -=== **4. Computational Workflow & Annotation Pipelines** === 93 - 94 -==== **Data Processing Steps** ==== 95 - 96 -**Data Ingestion:** 97 - 98 -* **Harmonized datasets** stored in **EBRAINS Bucket**. 99 -* **Preprocessing pipelines** clean and standardize data. 100 - 101 -**Feature Engineering:** 102 - 103 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 104 - 105 -**AI-Generated Annotations:** 106 - 107 -* **Automated tagging** of diagnostic features in **structured reports**. 108 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 109 - 110 -**Clinical Decision Support Integration:** 111 - 112 -* **AI-annotated findings** fed into **interactive dashboards**. 113 -* **Clinicians can adjust, validate, and modify annotations**. 114 - 115 ----- 116 - 117 -=== **5. Validation & Real-World Testing** === 118 - 119 -==== **Prospective Clinical Study** ==== 120 - 121 -* **Multi-center validation** of AI-based **annotations & risk stratifications**. 122 -* **Benchmarking against clinician-based diagnoses**. 123 -* **Real-world testing** of AI-powered **structured reporting**. 124 - 125 -==== **Quality Assurance & Explainability** ==== 126 - 127 -* **Annotations linked to structured knowledge graphs** for improved transparency. 128 -* **Interactive annotation editor** allows clinicians to validate AI outputs. 129 - 130 ----- 131 - 132 -=== **6. Collaborative Development** === 133 - 134 -The project is **open to contributions** from **researchers, clinicians, and developers**. 135 - 136 -**Key tools include:** 137 - 138 -* **Jupyter Notebooks**: For data analysis and pipeline development. 139 -** Example: **probabilistic imputation** 140 -* **Wiki Pages**: For documenting methods and results. 141 -* **Drive and Bucket**: For sharing code, data, and outputs. 142 -* **Collaboration with related projects**: 143 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 144 - 145 ----- 146 - 147 -=== **7. Tools and Technologies** === 148 - 149 -==== **Programming Languages:** ==== 150 - 151 -* **Python** for AI and data processing. 152 - 153 -==== **Frameworks:** ==== 154 - 155 -* **TensorFlow** and **PyTorch** for machine learning. 156 -* **Flask** or **FastAPI** for backend services. 157 - 158 -==== **Visualization:** ==== 159 - 160 -* **Plotly** and **Matplotlib** for interactive and static visualizations. 161 - 162 -==== **EBRAINS Services:** ==== 163 - 164 -* **Collaboratory Lab** for running Notebooks. 165 -* **Buckets** for storing large datasets. 166 - 167 ----- 168 - 169 -=== **Why This Matters** === 170 - 171 -* **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.** 172 -* **It enables real-time tracking of disease progression across the three diagnostic axes.** 173 -* **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.** 106 +
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.manuelmenendez - Size
-
... ... @@ -1,0 +1,1 @@ 1 +157.5 KB - Content