Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 7.1
edited by manuelmenendez
on 2025/02/01 14:11
on 2025/02/01 14:11
Change comment:
There is no comment for this version
To version 23.1
edited by manuelmenendez
on 2025/02/15 12:55
on 2025/02/15 12:55
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,189 +1,106 @@ 1 - ====**Overview**====1 +**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. Building upon the Florey Dementia Index (FDI) methodology, it now encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)**, which standardizes biomarker classification across all neurodegenerative diseases, facilitating cross-disease AI training. 2 2 3 - This project develops a**tridimensional diagnostic framework** for **CNS diseases**, incorporating**AI-powered annotation tools** to improve**interpretability, standardization, and clinical utility**. Themethodologyintegrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarkerdatasets**, and applies **machine learning models** toenerate**structured, explainable diagnostic outputs**.3 +**Neuromarker: Generalized Biomarker Ontology** 4 4 5 - ===**Workflow**===5 +Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration. 6 6 7 -1. ((( 8 -**We Use GitHub for AI Development** 7 +**Core Biomarker Categories** 9 9 10 -* Create a **GitHub repository** for AI scripts and models. 11 -* Use **GitHub Projects** to manage research milestones. 12 -))) 13 -1. ((( 14 -**We Use EBRAINS for Data & Collaboration** 9 +Within the Neurodiagnoses AI framework, biomarkers are categorized as follows: 15 15 16 -* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. 17 -* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. 18 -* Use **EBRAINS Wiki** for structured documentation and research discussion. 19 -))) 11 +|=**Category**|=**Description** 12 +|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 13 +|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 14 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL, autoantiboides 15 +|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 16 +|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 17 +|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 18 +|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 19 +|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 20 20 21 - ----21 +**Integrating External Databases into Neurodiagnoses** 22 22 23 - ===**1.Data Integration**===23 +To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps: 24 24 25 -==== **Data Sources** ==== 25 +1. ((( 26 +**Register for Access** 26 26 27 -**Biomedical Ontologies & Databases:** 28 +* Each external database requires individual registration and access approval. 29 +* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 30 +* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 31 +))) 32 +1. ((( 33 +**Download & Prepare Data** 28 28 29 -* **Human Phenotype Ontology (HPO)** for symptom annotation. 30 -* **Gene Ontology (GO)** for molecular and cellular processes. 35 +* Download datasets while adhering to database usage policies. 36 +* ((( 37 +Ensure files meet Neurodiagnoses format requirements: 31 31 32 -**Dimensionality Reduction and Interpretability:** 39 +|=**Data Type**|=**Accepted Formats** 40 +|**Tabular Data**|.csv, .tsv 41 +|**Neuroimaging**|.nii, .dcm 42 +|**Genomic Data**|.fasta, .vcf 43 +|**Clinical Metadata**|.json, .xml 44 +))) 45 +* ((( 46 +**Mandatory Fields for Integration**: 33 33 34 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 35 -* **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 48 +* Subject ID: Unique patient identifier 49 +* Diagnosis: Standardized disease classification 50 +* Biomarkers: CSF, plasma, or imaging biomarkers 51 +* Genetic Data: Whole-genome or exome sequencing 52 +* Neuroimaging Metadata: MRI/PET acquisition parameters 53 +))) 54 +))) 55 +1. ((( 56 +**Upload Data to Neurodiagnoses** 36 36 37 -**Neuroimaging & EEG/MEG Data:** 58 +* ((( 59 +**Option 1: Upload to EBRAINS Bucket** 38 38 39 -* **MRI volumetric measures** for brain atrophy tracking. 40 -* **EEG functional connectivity patterns** (AI-Mind). 61 +* Location: EBRAINS Neurodiagnoses Bucket 62 +* Ensure correct metadata tagging before submission. 63 +))) 64 +* ((( 65 +**Option 2: Contribute via GitHub Repository** 41 41 42 -**Clinical & Biomarker Data:** 67 +* Location: GitHub Data Repository 68 +* Create a new folder under /data/ and include a dataset description. 69 +* For large datasets, contact project administrators before uploading. 70 +))) 71 +))) 72 +1. ((( 73 +**Integrate Data into AI Models** 43 43 44 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 45 -* **Sleep monitoring and actigraphy data** (ADIS). 75 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 76 +* Standardize neuroimaging and biomarker formats using harmonization tools. 77 +* Utilize machine learning models to handle missing data and feature extraction. 78 +* Train AI models with newly integrated patient cohorts. 46 46 47 -**Federated Learning Integration:** 80 +**Reference**: See docs/data_processing.md for detailed instructions. 81 +))) 48 48 49 -* *Securemulti-centerdata harmonization**(PROMINENT).83 +**AI-Driven Biomarker Categorization** 50 50 51 - ----85 +Neurodiagnoses employs advanced AI models for biomarker classification: 52 52 53 -==== **Annotation System for Multi-Modal Data** ==== 87 +|=**Model Type**|=**Application** 88 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 89 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 90 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 54 54 55 - To ensure**structured integrationofdiverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotationsystem**, which will:92 +**Collaboration & Partnerships** 56 56 57 -* **Assign standardized metadata tags** to diagnostic features. 58 -* **Provide contextual explanations** for AI-based classifications. 59 -* **Track temporal disease progression annotations** to identify long-term trends. 94 +Neurodiagnoses actively seeks partnerships with data providers to: 60 60 61 ----- 96 +* Enable API-based data integration for real-time processing. 97 +* Co-develop harmonized AI-ready datasets with standardized annotations. 98 +* Secure funding opportunities through joint grant applications. 62 62 63 - ===**2. AI-BasedAnalysis**===100 +**Interested in Partnering?** 64 64 65 - ====**MachineLearning&DeepLearningModels** ====102 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 66 66 67 -** RiskPredictionModels:**104 +**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 68 68 69 -* **LETHE’s cognitive risk prediction model** integrated into the annotation framework. 70 - 71 -**Biomarker Classification & Probabilistic Imputation:** 72 - 73 -* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. 74 - 75 -**Neuroimaging Feature Extraction:** 76 - 77 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 78 - 79 -==== **AI-Powered Annotation System** ==== 80 - 81 -* Uses **SHAP-based interpretability tools** to explain model decisions. 82 -* Generates **automated clinical annotations** in structured reports. 83 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 84 - 85 ----- 86 - 87 -=== **3. Diagnostic Framework & Clinical Decision Support** === 88 - 89 -==== **Tridimensional Diagnostic Axes** ==== 90 - 91 -**Axis 1: Etiology (Pathogenic Mechanisms)** 92 - 93 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 94 -* **AI-assisted annotation** provides **causal interpretations** for clinical use. 95 - 96 -**Axis 2: Molecular Markers & Biomarkers** 97 - 98 -* **Integration of CSF, blood, and neuroimaging biomarkers**. 99 -* **Structured annotation** highlights **biological pathways linked to diagnosis**. 100 - 101 -**Axis 3: Neuroanatomoclinical Correlations** 102 - 103 -* **MRI and EEG data** provide anatomical and functional insights. 104 -* **AI-generated progression maps** annotate **brain structure-function relationships**. 105 - 106 ----- 107 - 108 -=== **4. Computational Workflow & Annotation Pipelines** === 109 - 110 -==== **Data Processing Steps** ==== 111 - 112 -**Data Ingestion:** 113 - 114 -* **Harmonized datasets** stored in **EBRAINS Bucket**. 115 -* **Preprocessing pipelines** clean and standardize data. 116 - 117 -**Feature Engineering:** 118 - 119 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 120 - 121 -**AI-Generated Annotations:** 122 - 123 -* **Automated tagging** of diagnostic features in **structured reports**. 124 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 125 - 126 -**Clinical Decision Support Integration:** 127 - 128 -* **AI-annotated findings** fed into **interactive dashboards**. 129 -* **Clinicians can adjust, validate, and modify annotations**. 130 - 131 ----- 132 - 133 -=== **5. Validation & Real-World Testing** === 134 - 135 -==== **Prospective Clinical Study** ==== 136 - 137 -* **Multi-center validation** of AI-based **annotations & risk stratifications**. 138 -* **Benchmarking against clinician-based diagnoses**. 139 -* **Real-world testing** of AI-powered **structured reporting**. 140 - 141 -==== **Quality Assurance & Explainability** ==== 142 - 143 -* **Annotations linked to structured knowledge graphs** for improved transparency. 144 -* **Interactive annotation editor** allows clinicians to validate AI outputs. 145 - 146 ----- 147 - 148 -=== **6. Collaborative Development** === 149 - 150 -The project is **open to contributions** from **researchers, clinicians, and developers**. 151 - 152 -**Key tools include:** 153 - 154 -* **Jupyter Notebooks**: For data analysis and pipeline development. 155 -** Example: **probabilistic imputation** 156 -* **Wiki Pages**: For documenting methods and results. 157 -* **Drive and Bucket**: For sharing code, data, and outputs. 158 -* **Collaboration with related projects**: 159 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 160 - 161 ----- 162 - 163 -=== **7. Tools and Technologies** === 164 - 165 -==== **Programming Languages:** ==== 166 - 167 -* **Python** for AI and data processing. 168 - 169 -==== **Frameworks:** ==== 170 - 171 -* **TensorFlow** and **PyTorch** for machine learning. 172 -* **Flask** or **FastAPI** for backend services. 173 - 174 -==== **Visualization:** ==== 175 - 176 -* **Plotly** and **Matplotlib** for interactive and static visualizations. 177 - 178 -==== **EBRAINS Services:** ==== 179 - 180 -* **Collaboratory Lab** for running Notebooks. 181 -* **Buckets** for storing large datasets. 182 - 183 ----- 184 - 185 -=== **Why This Matters** === 186 - 187 -* **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.** 188 -* **It enables real-time tracking of disease progression across the three diagnostic axes.** 189 -* **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.** 106 +
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.manuelmenendez - Size
-
... ... @@ -1,0 +1,1 @@ 1 +157.5 KB - Content