Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 7.1
edited by manuelmenendez
on 2025/02/01 14:11
on 2025/02/01 14:11
Change comment:
There is no comment for this version
To version 5.1
edited by manuelmenendez
on 2025/01/29 19:11
on 2025/01/29 19:11
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,23 +1,7 @@ 1 -=== =**Overview** ====1 +=== **Overview** === 2 2 3 -This project developsa**tridimensionaldiagnosticframework**for**CNSdiseases**,incorporating **AI-powered annotationtools**toimprove**interpretability,standardization,andclinicalutility**. The methodology integrates**multi-modaldata**,including**genetic,neuroimaging,neurophysiological, andbiomarker datasets**, andapplies**machinelearning models**togenerate**structured, explainable diagnosticoutputs**.3 +This section describes the step-by-step process used in the **Neurodiagnoses** project to develop a novel diagnostic framework for neurological diseases. The methodology integrates artificial intelligence (AI), biomedical ontologies, and computational neuroscience to create a structured, interpretable, and scalable diagnostic system. 4 4 5 -=== **Workflow** === 6 - 7 -1. ((( 8 -**We Use GitHub for AI Development** 9 - 10 -* Create a **GitHub repository** for AI scripts and models. 11 -* Use **GitHub Projects** to manage research milestones. 12 -))) 13 -1. ((( 14 -**We Use EBRAINS for Data & Collaboration** 15 - 16 -* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. 17 -* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. 18 -* Use **EBRAINS Wiki** for structured documentation and research discussion. 19 -))) 20 - 21 21 ---- 22 22 23 23 === **1. Data Integration** === ... ... @@ -24,166 +24,102 @@ 24 24 25 25 ==== **Data Sources** ==== 26 26 27 -**Biomedical Ontologies & Databases:** 11 +* **Biomedical Ontologies**: 12 +** Human Phenotype Ontology (HPO) for phenotypic abnormalities. 13 +** Gene Ontology (GO) for molecular and cellular processes. 14 +* **Neuroimaging Datasets**: 15 +** Example: Alzheimer’s Disease Neuroimaging Initiative (ADNI), OpenNeuro. 16 +* **Clinical and Biomarker Data**: 17 +** Anonymized clinical reports, molecular biomarkers, and test results. 28 28 29 -* **Human Phenotype Ontology (HPO)** for symptom annotation. 30 -* **Gene Ontology (GO)** for molecular and cellular processes. 31 31 32 -**D imensionality ReductionandInterpretability:**20 +==== **Data Preprocessing** ==== 33 33 34 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 35 -* **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 22 +1. **Standardization**: Ensure all data sources are normalized to a common format. 23 +1. **Feature Selection**: Identify relevant features for diagnosis (e.g., biomarkers, imaging scores). 24 +1. **Data Cleaning**: Handle missing values and remove duplicates. 36 36 37 -**Neuroimaging & EEG/MEG Data:** 38 - 39 -* **MRI volumetric measures** for brain atrophy tracking. 40 -* **EEG functional connectivity patterns** (AI-Mind). 41 - 42 -**Clinical & Biomarker Data:** 43 - 44 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 45 -* **Sleep monitoring and actigraphy data** (ADIS). 46 - 47 -**Federated Learning Integration:** 48 - 49 -* **Secure multi-center data harmonization** (PROMINENT). 50 - 51 51 ---- 52 52 53 -==== **Annotation System for Multi-Modal Data** ==== 54 - 55 -To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: 56 - 57 -* **Assign standardized metadata tags** to diagnostic features. 58 -* **Provide contextual explanations** for AI-based classifications. 59 -* **Track temporal disease progression annotations** to identify long-term trends. 60 - 61 ----- 62 - 63 63 === **2. AI-Based Analysis** === 64 64 65 -==== **M achineLearning &DeepLearning Models** ====30 +==== **Model Development** ==== 66 66 67 -**Risk Prediction Models:** 32 +* **Embedding Models**: Use pre-trained models like BioBERT or BioLORD for text data. 33 +* **Classification Models**: 34 +** Algorithms: Random Forest, Support Vector Machines (SVM), or neural networks. 35 +** Purpose: Predict the likelihood of specific neurological conditions based on input data. 68 68 69 - ***LETHE’scognitiverisk predictionmodel**integrated into theannotationframework.37 +==== **Dimensionality Reduction and Interpretability** ==== 70 70 71 -**Biomarker Classification & Probabilistic Imputation:** 39 +* Leverage [[DEIBO>>https://drive.ebrains.eu/f/8d7157708cde4b258db0/]] (Data-driven Embedding Interpretation Based on Ontologies) to connect model dimensions to ontology concepts. 40 +* Evaluate interpretability using metrics like the Area Under the Interpretability Curve (AUIC). 72 72 73 -* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. 74 - 75 -**Neuroimaging Feature Extraction:** 76 - 77 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 78 - 79 -==== **AI-Powered Annotation System** ==== 80 - 81 -* Uses **SHAP-based interpretability tools** to explain model decisions. 82 -* Generates **automated clinical annotations** in structured reports. 83 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 84 - 85 85 ---- 86 86 87 -=== **3. Diagnostic Framework & Clinical Decision Support** ===44 +=== **3. Diagnostic Framework** === 88 88 89 -==== ** TridimensionalDiagnostic Axes** ====46 +==== **Axes of Diagnosis** ==== 90 90 91 - **Axis1:Etiology(PathogenicMechanisms)**48 +The framework organizes diagnostic data into three axes: 92 92 93 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 94 -* **AI-assisted annotation** provides **causal interpretations** for clinical use. 50 +1. **Etiology**: Genetic and environmental risk factors. 51 +1. **Molecular Markers**: Biomarkers such as amyloid-beta, tau, and alpha-synuclein. 52 +1. **Neuroanatomical Correlations**: Results from neuroimaging (e.g., MRI, PET). 95 95 96 -** Axis 2: Molecular Markers & Biomarkers**54 +==== **Recommendation System** ==== 97 97 98 -* **Integrationof CSF, blood,and neuroimagingbiomarkers**.99 -* **Structured annotation** highlights**biological pathwayslinkedtodiagnosis**.56 +* Suggests additional tests or biomarkers if gaps are detected in the data. 57 +* Prioritizes tests based on clinical impact and cost-effectiveness. 100 100 101 -**Axis 3: Neuroanatomoclinical Correlations** 102 - 103 -* **MRI and EEG data** provide anatomical and functional insights. 104 -* **AI-generated progression maps** annotate **brain structure-function relationships**. 105 - 106 106 ---- 107 107 108 -=== **4. Computational Workflow & Annotation Pipelines** ===61 +=== **4. Computational Workflow** === 109 109 110 -==== **Data Processing Steps** ==== 63 +1. **Data Loading**: Import data from storage (Drive or Bucket). 64 +1. **Feature Engineering**: Generate derived features from the raw data. 65 +1. **Model Training**: 66 +1*. Split data into training, validation, and test sets. 67 +1*. Train models with cross-validation to ensure robustness. 68 +1. **Evaluation**: 69 +1*. Metrics: Accuracy, F1-Score, AUIC for interpretability. 70 +1*. Compare against baseline models and domain benchmarks. 111 111 112 -**Data Ingestion:** 113 - 114 -* **Harmonized datasets** stored in **EBRAINS Bucket**. 115 -* **Preprocessing pipelines** clean and standardize data. 116 - 117 -**Feature Engineering:** 118 - 119 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 120 - 121 -**AI-Generated Annotations:** 122 - 123 -* **Automated tagging** of diagnostic features in **structured reports**. 124 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 125 - 126 -**Clinical Decision Support Integration:** 127 - 128 -* **AI-annotated findings** fed into **interactive dashboards**. 129 -* **Clinicians can adjust, validate, and modify annotations**. 130 - 131 131 ---- 132 132 133 -=== **5. Validation & Real-World Testing** ===74 +=== **5. Validation** === 134 134 135 -==== ** ProspectiveClinicalStudy** ====76 +==== **Internal Validation** ==== 136 136 137 -* **Multi-center validation** of AI-based **annotations & risk stratifications**. 138 -* **Benchmarking against clinician-based diagnoses**. 139 -* **Real-world testing** of AI-powered **structured reporting**. 78 +* Test the system using simulated datasets and known clinical cases. 79 +* Fine-tune models based on validation results. 140 140 141 -==== ** Quality Assurance & Explainability** ====81 +==== **External Validation** ==== 142 142 143 -* **Annotationslinked to structuredknowledgegraphs** forimprovedtransparency.144 -* **Interactive annotationeditor**allowsclinicianstovalidateAI outputs.83 +* Collaborate with research institutions and hospitals to test the system in real-world settings. 84 +* Use anonymized patient data to ensure privacy compliance. 145 145 146 146 ---- 147 147 148 148 === **6. Collaborative Development** === 149 149 150 -The project is **open to contributions**from**researchers, clinicians, and developers**.90 +The project is open to contributions from researchers, clinicians, and developers. Key tools include: 151 151 152 -**Key tools include:** 153 - 154 154 * **Jupyter Notebooks**: For data analysis and pipeline development. 155 -** Example: **probabilistic imputation**93 +** Example: [[probabilistic imputation>>https://drive.ebrains.eu/f/4f69ab52f7734ef48217/]] 156 156 * **Wiki Pages**: For documenting methods and results. 157 157 * **Drive and Bucket**: For sharing code, data, and outputs. 158 -* **Collaboration with related projects**: 159 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 96 +* **Collaboration with related projects: **For instance: [[//Beyond the hype: AI in dementia – from early risk detection to disease treatment//>>https://www.lethe-project.eu/beyond-the-hype-ai-in-dementia-from-early-risk-detection-to-disease-treatment/]] 160 160 161 161 ---- 162 162 163 163 === **7. Tools and Technologies** === 164 164 165 -==== **Programming Languages:** ==== 166 - 167 -* **Python** for AI and data processing. 168 - 169 -==== **Frameworks:** ==== 170 - 171 -* **TensorFlow** and **PyTorch** for machine learning. 172 -* **Flask** or **FastAPI** for backend services. 173 - 174 -==== **Visualization:** ==== 175 - 176 -* **Plotly** and **Matplotlib** for interactive and static visualizations. 177 - 178 -==== **EBRAINS Services:** ==== 179 - 180 -* **Collaboratory Lab** for running Notebooks. 181 -* **Buckets** for storing large datasets. 182 - 183 ----- 184 - 185 -=== **Why This Matters** === 186 - 187 -* **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.** 188 -* **It enables real-time tracking of disease progression across the three diagnostic axes.** 189 -* **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.** 102 +* **Programming Languages**: Python for AI and data processing. 103 +* **Frameworks**: 104 +** TensorFlow and PyTorch for machine learning. 105 +** Flask or FastAPI for backend services. 106 +* **Visualization**: Plotly and Matplotlib for interactive and static visualizations. 107 +* **EBRAINS Services**: 108 +** Collaboratory Lab for running Notebooks. 109 +** Buckets for storing large datasets.