Wiki source code of Methodology
Version 10.1 by manuelmenendez on 2025/02/01 18:31
Show last authors
author | version | line-number | content |
---|---|---|---|
1 | ==== **Overview** ==== | ||
2 | |||
3 | This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**. | ||
4 | |||
5 | === **Workflow** === | ||
6 | |||
7 | 1. ((( | ||
8 | **We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/users/manuelmenendezgonzalez/projects/1/views/1]]** | ||
9 | |||
10 | * Create a **GitHub repository** for AI scripts and models. | ||
11 | * Use **GitHub Projects** to manage research milestones. | ||
12 | ))) | ||
13 | 1. ((( | ||
14 | **We Use EBRAINS for Data & Collaboration** | ||
15 | |||
16 | * Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. | ||
17 | * Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. | ||
18 | * Use **EBRAINS Wiki** for structured documentation and research discussion. | ||
19 | ))) | ||
20 | |||
21 | ---- | ||
22 | |||
23 | === **1. Data Integration** === | ||
24 | |||
25 | ==== **Data Sources** ==== | ||
26 | |||
27 | **Biomedical Ontologies & Databases:** | ||
28 | |||
29 | * **Human Phenotype Ontology (HPO)** for symptom annotation. | ||
30 | * **Gene Ontology (GO)** for molecular and cellular processes. | ||
31 | |||
32 | **Dimensionality Reduction and Interpretability:** | ||
33 | |||
34 | * **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. | ||
35 | * **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. | ||
36 | |||
37 | **Neuroimaging & EEG/MEG Data:** | ||
38 | |||
39 | * **MRI volumetric measures** for brain atrophy tracking. | ||
40 | * **EEG functional connectivity patterns** (AI-Mind). | ||
41 | |||
42 | **Clinical & Biomarker Data:** | ||
43 | |||
44 | * **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). | ||
45 | * **Sleep monitoring and actigraphy data** (ADIS). | ||
46 | |||
47 | **Federated Learning Integration:** | ||
48 | |||
49 | * **Secure multi-center data harmonization** (PROMINENT). | ||
50 | |||
51 | ---- | ||
52 | |||
53 | ==== **Annotation System for Multi-Modal Data** ==== | ||
54 | |||
55 | To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: | ||
56 | |||
57 | * **Assign standardized metadata tags** to diagnostic features. | ||
58 | * **Provide contextual explanations** for AI-based classifications. | ||
59 | * **Track temporal disease progression annotations** to identify long-term trends. | ||
60 | |||
61 | ---- | ||
62 | |||
63 | === **2. AI-Based Analysis** === | ||
64 | |||
65 | ==== **Machine Learning & Deep Learning Models** ==== | ||
66 | |||
67 | **Risk Prediction Models:** | ||
68 | |||
69 | * **LETHE’s cognitive risk prediction model** integrated into the annotation framework. | ||
70 | |||
71 | **Biomarker Classification & Probabilistic Imputation:** | ||
72 | |||
73 | * **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. | ||
74 | |||
75 | **Neuroimaging Feature Extraction:** | ||
76 | |||
77 | * **MRI & EEG data** annotated with **neuroanatomical feature labels**. | ||
78 | |||
79 | ==== **AI-Powered Annotation System** ==== | ||
80 | |||
81 | * Uses **SHAP-based interpretability tools** to explain model decisions. | ||
82 | * Generates **automated clinical annotations** in structured reports. | ||
83 | * Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). | ||
84 | |||
85 | ---- | ||
86 | |||
87 | === **3. Diagnostic Framework & Clinical Decision Support** === | ||
88 | |||
89 | ==== **Tridimensional Diagnostic Axes** ==== | ||
90 | |||
91 | **Axis 1: Etiology (Pathogenic Mechanisms)** | ||
92 | |||
93 | * Classification based on **genetic markers, cellular pathways, and environmental risk factors**. | ||
94 | * **AI-assisted annotation** provides **causal interpretations** for clinical use. | ||
95 | |||
96 | **Axis 2: Molecular Markers & Biomarkers** | ||
97 | |||
98 | * **Integration of CSF, blood, and neuroimaging biomarkers**. | ||
99 | * **Structured annotation** highlights **biological pathways linked to diagnosis**. | ||
100 | |||
101 | **Axis 3: Neuroanatomoclinical Correlations** | ||
102 | |||
103 | * **MRI and EEG data** provide anatomical and functional insights. | ||
104 | * **AI-generated progression maps** annotate **brain structure-function relationships**. | ||
105 | |||
106 | ---- | ||
107 | |||
108 | === **4. Computational Workflow & Annotation Pipelines** === | ||
109 | |||
110 | ==== **Data Processing Steps** ==== | ||
111 | |||
112 | **Data Ingestion:** | ||
113 | |||
114 | * **Harmonized datasets** stored in **EBRAINS Bucket**. | ||
115 | * **Preprocessing pipelines** clean and standardize data. | ||
116 | |||
117 | **Feature Engineering:** | ||
118 | |||
119 | * **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. | ||
120 | |||
121 | **AI-Generated Annotations:** | ||
122 | |||
123 | * **Automated tagging** of diagnostic features in **structured reports**. | ||
124 | * **Explainability modules (SHAP, LIME)** ensure transparency in predictions. | ||
125 | |||
126 | **Clinical Decision Support Integration:** | ||
127 | |||
128 | * **AI-annotated findings** fed into **interactive dashboards**. | ||
129 | * **Clinicians can adjust, validate, and modify annotations**. | ||
130 | |||
131 | ---- | ||
132 | |||
133 | === **5. Validation & Real-World Testing** === | ||
134 | |||
135 | ==== **Prospective Clinical Study** ==== | ||
136 | |||
137 | * **Multi-center validation** of AI-based **annotations & risk stratifications**. | ||
138 | * **Benchmarking against clinician-based diagnoses**. | ||
139 | * **Real-world testing** of AI-powered **structured reporting**. | ||
140 | |||
141 | ==== **Quality Assurance & Explainability** ==== | ||
142 | |||
143 | * **Annotations linked to structured knowledge graphs** for improved transparency. | ||
144 | * **Interactive annotation editor** allows clinicians to validate AI outputs. | ||
145 | |||
146 | ---- | ||
147 | |||
148 | === **6. Collaborative Development** === | ||
149 | |||
150 | The project is **open to contributions** from **researchers, clinicians, and developers**. | ||
151 | |||
152 | **Key tools include:** | ||
153 | |||
154 | * **Jupyter Notebooks**: For data analysis and pipeline development. | ||
155 | ** Example: **probabilistic imputation** | ||
156 | * **Wiki Pages**: For documenting methods and results. | ||
157 | * **Drive and Bucket**: For sharing code, data, and outputs. | ||
158 | * **Collaboration with related projects**: | ||
159 | ** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** | ||
160 | |||
161 | ---- | ||
162 | |||
163 | === **7. Tools and Technologies** === | ||
164 | |||
165 | ==== **Programming Languages:** ==== | ||
166 | |||
167 | * **Python** for AI and data processing. | ||
168 | |||
169 | ==== **Frameworks:** ==== | ||
170 | |||
171 | * **TensorFlow** and **PyTorch** for machine learning. | ||
172 | * **Flask** or **FastAPI** for backend services. | ||
173 | |||
174 | ==== **Visualization:** ==== | ||
175 | |||
176 | * **Plotly** and **Matplotlib** for interactive and static visualizations. | ||
177 | |||
178 | ==== **EBRAINS Services:** ==== | ||
179 | |||
180 | * **Collaboratory Lab** for running Notebooks. | ||
181 | * **Buckets** for storing large datasets. | ||
182 | |||
183 | ---- | ||
184 | |||
185 | === **Why This Matters** === | ||
186 | |||
187 | * **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.** | ||
188 | * **It enables real-time tracking of disease progression across the three diagnostic axes.** | ||
189 | * **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.** |