Wiki source code of Methodology
Version 12.2 by manuelmenendez on 2025/02/09 09:54
Show last authors
author | version | line-number | content |
---|---|---|---|
1 | ==== **Overview** ==== | ||
2 | |||
3 | This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**. | ||
4 | |||
5 | === **Workflow** === | ||
6 | |||
7 | 1. ((( | ||
8 | **We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]** | ||
9 | |||
10 | * Create a **GitHub repository** for AI scripts and models. | ||
11 | * Use **GitHub Projects** to manage research milestones. | ||
12 | ))) | ||
13 | 1. ((( | ||
14 | **We Use EBRAINS for Data & Collaboration** | ||
15 | |||
16 | * Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. | ||
17 | * Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. | ||
18 | * Use **EBRAINS Wiki** for structured documentation and research discussion. | ||
19 | ))) | ||
20 | |||
21 | ---- | ||
22 | |||
23 | === **1. Data Integration** === | ||
24 | |||
25 | == Overview == | ||
26 | |||
27 | |||
28 | Neurodiagnoses integrates clinical data via the **EBRAINS Medical Informatics Platform (MIP)**. MIP federates decentralized clinical data, allowing Neurodiagnoses to securely access and process sensitive information for AI-based diagnostics. | ||
29 | |||
30 | == How It Works == | ||
31 | |||
32 | |||
33 | 1. ((( | ||
34 | **Authentication & API Access:** | ||
35 | |||
36 | * Users must have an **EBRAINS account**. | ||
37 | * Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**). | ||
38 | ))) | ||
39 | 1. ((( | ||
40 | **Data Mapping & Harmonization:** | ||
41 | |||
42 | * Retrieved data is **normalized** and converted to standard formats (.csv, .json). | ||
43 | * Data from **multiple sources** is harmonized to ensure consistency for AI processing. | ||
44 | ))) | ||
45 | 1. ((( | ||
46 | **Security & Compliance:** | ||
47 | |||
48 | * All data access is **logged and monitored**. | ||
49 | * Data remains on **MIP servers** using **federated learning techniques** when possible. | ||
50 | * Access is granted only after signing a **Data Usage Agreement (DUA)**. | ||
51 | ))) | ||
52 | |||
53 | == Implementation Steps == | ||
54 | |||
55 | |||
56 | 1. Clone the repository. | ||
57 | 1. Configure your **EBRAINS API credentials** in mip_integration.py. | ||
58 | 1. Run the script to **download and harmonize clinical data**. | ||
59 | 1. Process the data for **AI model training**. | ||
60 | |||
61 | For more detailed instructions, please refer to the **[[MIP Documentation>>url:https://mip.ebrains.eu/]]**. | ||
62 | |||
63 | ---- | ||
64 | |||
65 | = Data Processing & Integration with Clinica.Run = | ||
66 | |||
67 | |||
68 | == Overview == | ||
69 | |||
70 | |||
71 | Neurodiagnoses now supports **Clinica.Run**, an open-source neuroimaging platform designed for **multimodal data processing and reproducible neuroscience workflows**. | ||
72 | |||
73 | == How It Works == | ||
74 | |||
75 | |||
76 | 1. ((( | ||
77 | **Neuroimaging Preprocessing:** | ||
78 | |||
79 | * MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**. | ||
80 | * Supports **longitudinal and cross-sectional analyses**. | ||
81 | ))) | ||
82 | 1. ((( | ||
83 | **Automated Biomarker Extraction:** | ||
84 | |||
85 | * Standardized extraction of **volumetric, metabolic, and functional biomarkers**. | ||
86 | * Integration with machine learning models in Neurodiagnoses. | ||
87 | ))) | ||
88 | 1. ((( | ||
89 | **Data Security & Compliance:** | ||
90 | |||
91 | * Clinica.Run operates in **compliance with GDPR and HIPAA**. | ||
92 | * Neuroimaging data remains **within the original storage environment**. | ||
93 | ))) | ||
94 | |||
95 | == Implementation Steps == | ||
96 | |||
97 | |||
98 | 1. Install **Clinica.Run** dependencies. | ||
99 | 1. Configure your **Clinica.Run pipeline** in clinica_run_config.json. | ||
100 | 1. Run the pipeline for **preprocessing and biomarker extraction**. | ||
101 | 1. Use processed neuroimaging data for **AI-driven diagnostics** in Neurodiagnoses. | ||
102 | |||
103 | For further information, refer to **[[Clinica.Run Documentation>>url:https://clinica.run/]]**. | ||
104 | |||
105 | ==== ==== | ||
106 | |||
107 | ==== **Data Sources** ==== | ||
108 | |||
109 | [[List of potential sources of databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] | ||
110 | |||
111 | **Biomedical Ontologies & Databases:** | ||
112 | |||
113 | * **Human Phenotype Ontology (HPO)** for symptom annotation. | ||
114 | * **Gene Ontology (GO)** for molecular and cellular processes. | ||
115 | |||
116 | **Dimensionality Reduction and Interpretability:** | ||
117 | |||
118 | * **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. | ||
119 | * **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. | ||
120 | |||
121 | **Neuroimaging & EEG/MEG Data:** | ||
122 | |||
123 | * **MRI volumetric measures** for brain atrophy tracking. | ||
124 | * **EEG functional connectivity patterns** (AI-Mind). | ||
125 | |||
126 | **Clinical & Biomarker Data:** | ||
127 | |||
128 | * **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). | ||
129 | * **Sleep monitoring and actigraphy data** (ADIS). | ||
130 | |||
131 | **Federated Learning Integration:** | ||
132 | |||
133 | * **Secure multi-center data harmonization** (PROMINENT). | ||
134 | |||
135 | ---- | ||
136 | |||
137 | ==== **Annotation System for Multi-Modal Data** ==== | ||
138 | |||
139 | To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: | ||
140 | |||
141 | * **Assign standardized metadata tags** to diagnostic features. | ||
142 | * **Provide contextual explanations** for AI-based classifications. | ||
143 | * **Track temporal disease progression annotations** to identify long-term trends. | ||
144 | |||
145 | ---- | ||
146 | |||
147 | === **2. AI-Based Analysis** === | ||
148 | |||
149 | ==== **Machine Learning & Deep Learning Models** ==== | ||
150 | |||
151 | **Risk Prediction Models:** | ||
152 | |||
153 | * **LETHE’s cognitive risk prediction model** integrated into the annotation framework. | ||
154 | |||
155 | **Biomarker Classification & Probabilistic Imputation:** | ||
156 | |||
157 | * **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. | ||
158 | |||
159 | **Neuroimaging Feature Extraction:** | ||
160 | |||
161 | * **MRI & EEG data** annotated with **neuroanatomical feature labels**. | ||
162 | |||
163 | ==== **AI-Powered Annotation System** ==== | ||
164 | |||
165 | * Uses **SHAP-based interpretability tools** to explain model decisions. | ||
166 | * Generates **automated clinical annotations** in structured reports. | ||
167 | * Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). | ||
168 | |||
169 | ---- | ||
170 | |||
171 | === **3. Diagnostic Framework & Clinical Decision Support** === | ||
172 | |||
173 | ==== **Tridimensional Diagnostic Axes** ==== | ||
174 | |||
175 | **Axis 1: Etiology (Pathogenic Mechanisms)** | ||
176 | |||
177 | * Classification based on **genetic markers, cellular pathways, and environmental risk factors**. | ||
178 | * **AI-assisted annotation** provides **causal interpretations** for clinical use. | ||
179 | |||
180 | **Axis 2: Molecular Markers & Biomarkers** | ||
181 | |||
182 | * **Integration of CSF, blood, and neuroimaging biomarkers**. | ||
183 | * **Structured annotation** highlights **biological pathways linked to diagnosis**. | ||
184 | |||
185 | **Axis 3: Neuroanatomoclinical Correlations** | ||
186 | |||
187 | * **MRI and EEG data** provide anatomical and functional insights. | ||
188 | * **AI-generated progression maps** annotate **brain structure-function relationships**. | ||
189 | |||
190 | ---- | ||
191 | |||
192 | === **4. Computational Workflow & Annotation Pipelines** === | ||
193 | |||
194 | ==== **Data Processing Steps** ==== | ||
195 | |||
196 | **Data Ingestion:** | ||
197 | |||
198 | * **Harmonized datasets** stored in **EBRAINS Bucket**. | ||
199 | * **Preprocessing pipelines** clean and standardize data. | ||
200 | |||
201 | **Feature Engineering:** | ||
202 | |||
203 | * **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. | ||
204 | |||
205 | **AI-Generated Annotations:** | ||
206 | |||
207 | * **Automated tagging** of diagnostic features in **structured reports**. | ||
208 | * **Explainability modules (SHAP, LIME)** ensure transparency in predictions. | ||
209 | |||
210 | **Clinical Decision Support Integration:** | ||
211 | |||
212 | * **AI-annotated findings** fed into **interactive dashboards**. | ||
213 | * **Clinicians can adjust, validate, and modify annotations**. | ||
214 | |||
215 | ---- | ||
216 | |||
217 | === **5. Validation & Real-World Testing** === | ||
218 | |||
219 | ==== **Prospective Clinical Study** ==== | ||
220 | |||
221 | * **Multi-center validation** of AI-based **annotations & risk stratifications**. | ||
222 | * **Benchmarking against clinician-based diagnoses**. | ||
223 | * **Real-world testing** of AI-powered **structured reporting**. | ||
224 | |||
225 | ==== **Quality Assurance & Explainability** ==== | ||
226 | |||
227 | * **Annotations linked to structured knowledge graphs** for improved transparency. | ||
228 | * **Interactive annotation editor** allows clinicians to validate AI outputs. | ||
229 | |||
230 | ---- | ||
231 | |||
232 | === **6. Collaborative Development** === | ||
233 | |||
234 | The project is **open to contributions** from **researchers, clinicians, and developers**. | ||
235 | |||
236 | **Key tools include:** | ||
237 | |||
238 | * **Jupyter Notebooks**: For data analysis and pipeline development. | ||
239 | ** Example: **probabilistic imputation** | ||
240 | * **Wiki Pages**: For documenting methods and results. | ||
241 | * **Drive and Bucket**: For sharing code, data, and outputs. | ||
242 | * **Collaboration with related projects**: | ||
243 | ** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** | ||
244 | |||
245 | ---- | ||
246 | |||
247 | === **7. Tools and Technologies** === | ||
248 | |||
249 | ==== **Programming Languages:** ==== | ||
250 | |||
251 | * **Python** for AI and data processing. | ||
252 | |||
253 | ==== **Frameworks:** ==== | ||
254 | |||
255 | * **TensorFlow** and **PyTorch** for machine learning. | ||
256 | * **Flask** or **FastAPI** for backend services. | ||
257 | |||
258 | ==== **Visualization:** ==== | ||
259 | |||
260 | * **Plotly** and **Matplotlib** for interactive and static visualizations. | ||
261 | |||
262 | ==== **EBRAINS Services:** ==== | ||
263 | |||
264 | * **Collaboratory Lab** for running Notebooks. | ||
265 | * **Buckets** for storing large datasets. | ||
266 | |||
267 | ---- | ||
268 | |||
269 | === **Why This Matters** === | ||
270 | |||
271 | * The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful. | ||
272 | * It enables real-time tracking of disease progression across the three diagnostic axes. | ||
273 | * It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows. |