Wiki source code of Methodology

Version 25.1 by manuelmenendez on 2025/02/22 18:32

Hide last authors
manuelmenendez 22.1 1 **Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. Building upon the Florey Dementia Index (FDI) methodology, it now encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)**, which standardizes biomarker classification across all neurodegenerative diseases, facilitating cross-disease AI training.
manuelmenendez 1.1 2
manuelmenendez 22.1 3 **Neuromarker: Generalized Biomarker Ontology**
manuelmenendez 1.1 4
manuelmenendez 22.1 5 Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration.
manuelmenendez 1.1 6
manuelmenendez 25.1 7 **Recommended Software**
8
9 There is a suite of software that can help implement the workflow needed in Neurodiagnoses. Find a list of recommendations [[here>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/recommended_software]].
10
manuelmenendez 22.1 11 **Core Biomarker Categories**
manuelmenendez 19.1 12
manuelmenendez 22.1 13 Within the Neurodiagnoses AI framework, biomarkers are categorized as follows:
manuelmenendez 19.1 14
manuelmenendez 20.1 15 |=**Category**|=**Description**
16 |**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic)
17 |**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein)
manuelmenendez 23.1 18 |**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL, autoantiboides
manuelmenendez 20.1 19 |**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers
20 |**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers
21 |**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS)
22 |**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores
23 |**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities
manuelmenendez 19.1 24
manuelmenendez 22.1 25 **Integrating External Databases into Neurodiagnoses**
manuelmenendez 19.1 26
manuelmenendez 22.1 27 To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps:
manuelmenendez 1.1 28
manuelmenendez 22.1 29 1. (((
30 **Register for Access**
manuelmenendez 12.2 31
manuelmenendez 22.1 32 * Each external database requires individual registration and access approval.
33 * Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses.
34 * Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data.
35 )))
36 1. (((
37 **Download & Prepare Data**
manuelmenendez 12.2 38
manuelmenendez 22.1 39 * Download datasets while adhering to database usage policies.
40 * (((
41 Ensure files meet Neurodiagnoses format requirements:
manuelmenendez 12.2 42
manuelmenendez 20.1 43 |=**Data Type**|=**Accepted Formats**
44 |**Tabular Data**|.csv, .tsv
45 |**Neuroimaging**|.nii, .dcm
46 |**Genomic Data**|.fasta, .vcf
47 |**Clinical Metadata**|.json, .xml
manuelmenendez 22.1 48 )))
49 * (((
50 **Mandatory Fields for Integration**:
manuelmenendez 12.2 51
manuelmenendez 22.1 52 * Subject ID: Unique patient identifier
53 * Diagnosis: Standardized disease classification
54 * Biomarkers: CSF, plasma, or imaging biomarkers
55 * Genetic Data: Whole-genome or exome sequencing
56 * Neuroimaging Metadata: MRI/PET acquisition parameters
57 )))
58 )))
59 1. (((
60 **Upload Data to Neurodiagnoses**
manuelmenendez 12.2 61
manuelmenendez 22.1 62 * (((
63 **Option 1: Upload to EBRAINS Bucket**
manuelmenendez 12.2 64
manuelmenendez 22.1 65 * Location: EBRAINS Neurodiagnoses Bucket
66 * Ensure correct metadata tagging before submission.
67 )))
68 * (((
69 **Option 2: Contribute via GitHub Repository**
manuelmenendez 12.2 70
manuelmenendez 22.1 71 * Location: GitHub Data Repository
72 * Create a new folder under /data/ and include a dataset description.
73 * For large datasets, contact project administrators before uploading.
74 )))
75 )))
76 1. (((
77 **Integrate Data into AI Models**
manuelmenendez 12.2 78
manuelmenendez 22.1 79 * Open Jupyter Notebooks on EBRAINS to run preprocessing scripts.
80 * Standardize neuroimaging and biomarker formats using harmonization tools.
81 * Utilize machine learning models to handle missing data and feature extraction.
82 * Train AI models with newly integrated patient cohorts.
manuelmenendez 12.2 83
manuelmenendez 20.1 84 **Reference**: See docs/data_processing.md for detailed instructions.
manuelmenendez 22.1 85 )))
manuelmenendez 12.2 86
manuelmenendez 22.1 87 **AI-Driven Biomarker Categorization**
manuelmenendez 12.2 88
manuelmenendez 22.1 89 Neurodiagnoses employs advanced AI models for biomarker classification:
manuelmenendez 12.2 90
manuelmenendez 20.1 91 |=**Model Type**|=**Application**
92 |**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases
93 |**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers
94 |**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data
manuelmenendez 1.1 95
manuelmenendez 22.1 96 **Collaboration & Partnerships**
manuelmenendez 1.1 97
manuelmenendez 22.1 98 Neurodiagnoses actively seeks partnerships with data providers to:
manuelmenendez 21.1 99
manuelmenendez 22.1 100 * Enable API-based data integration for real-time processing.
101 * Co-develop harmonized AI-ready datasets with standardized annotations.
102 * Secure funding opportunities through joint grant applications.
manuelmenendez 6.1 103
manuelmenendez 20.1 104 **Interested in Partnering?**
manuelmenendez 1.1 105
manuelmenendez 22.1 106 If you represent a research consortium or database provider, reach out to explore data-sharing agreements.
manuelmenendez 1.1 107
manuelmenendez 22.1 108 **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
manuelmenendez 1.1 109
manuelmenendez 24.1 110 **Final Notes**
111
112 Neurodiagnoses AI is committed to advancing the integration of artificial intelligence in neurodiagnostic processes. By continuously expanding our data ecosystem and incorporating standardized biomarker classifications through the Neuromarker ontology, we aim to enhance cross-disease AI training and improve diagnostic accuracy across neurodegenerative disorders.
113
114 We encourage researchers and institutions to contribute new datasets and methodologies to further enrich this collaborative platform. Your participation is vital in driving innovation and fostering a deeper understanding of complex neurological conditions.
115
116 **For additional technical documentation and collaboration opportunities:**
117
118 * **GitHub Repository:** [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]]
119 * **EBRAINS Collaboration Page:** [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]]
120
121 If you encounter any issues during data integration or have suggestions for improvement, please open a GitHub Issue or consult the EBRAINS Neurodiagnoses Forum. Together, we can advance the field of neurodiagnostics and contribute to better patient outcomes.