Wiki source code of Methodology
Version 6.1 by manuelmenendez on 2025/02/01 11:57
Show last authors
author | version | line-number | content |
---|---|---|---|
1 | ==== **Overview** ==== | ||
2 | |||
3 | This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**. | ||
4 | |||
5 | ---- | ||
6 | |||
7 | === **1. Data Integration** === | ||
8 | |||
9 | ==== **Data Sources** ==== | ||
10 | |||
11 | **Biomedical Ontologies & Databases:** | ||
12 | |||
13 | * **Human Phenotype Ontology (HPO)** for symptom annotation. | ||
14 | * **Gene Ontology (GO)** for molecular and cellular processes. | ||
15 | |||
16 | **Dimensionality Reduction and Interpretability:** | ||
17 | |||
18 | * **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. | ||
19 | * **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. | ||
20 | |||
21 | **Neuroimaging & EEG/MEG Data:** | ||
22 | |||
23 | * **MRI volumetric measures** for brain atrophy tracking. | ||
24 | * **EEG functional connectivity patterns** (AI-Mind). | ||
25 | |||
26 | **Clinical & Biomarker Data:** | ||
27 | |||
28 | * **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). | ||
29 | * **Sleep monitoring and actigraphy data** (ADIS). | ||
30 | |||
31 | **Federated Learning Integration:** | ||
32 | |||
33 | * **Secure multi-center data harmonization** (PROMINENT). | ||
34 | |||
35 | ---- | ||
36 | |||
37 | ==== **Annotation System for Multi-Modal Data** ==== | ||
38 | |||
39 | To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: | ||
40 | |||
41 | * **Assign standardized metadata tags** to diagnostic features. | ||
42 | * **Provide contextual explanations** for AI-based classifications. | ||
43 | * **Track temporal disease progression annotations** to identify long-term trends. | ||
44 | |||
45 | ---- | ||
46 | |||
47 | === **2. AI-Based Analysis** === | ||
48 | |||
49 | ==== **Machine Learning & Deep Learning Models** ==== | ||
50 | |||
51 | **Risk Prediction Models:** | ||
52 | |||
53 | * **LETHE’s cognitive risk prediction model** integrated into the annotation framework. | ||
54 | |||
55 | **Biomarker Classification & Probabilistic Imputation:** | ||
56 | |||
57 | * **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. | ||
58 | |||
59 | **Neuroimaging Feature Extraction:** | ||
60 | |||
61 | * **MRI & EEG data** annotated with **neuroanatomical feature labels**. | ||
62 | |||
63 | ==== **AI-Powered Annotation System** ==== | ||
64 | |||
65 | * Uses **SHAP-based interpretability tools** to explain model decisions. | ||
66 | * Generates **automated clinical annotations** in structured reports. | ||
67 | * Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). | ||
68 | |||
69 | ---- | ||
70 | |||
71 | === **3. Diagnostic Framework & Clinical Decision Support** === | ||
72 | |||
73 | ==== **Tridimensional Diagnostic Axes** ==== | ||
74 | |||
75 | **Axis 1: Etiology (Pathogenic Mechanisms)** | ||
76 | |||
77 | * Classification based on **genetic markers, cellular pathways, and environmental risk factors**. | ||
78 | * **AI-assisted annotation** provides **causal interpretations** for clinical use. | ||
79 | |||
80 | **Axis 2: Molecular Markers & Biomarkers** | ||
81 | |||
82 | * **Integration of CSF, blood, and neuroimaging biomarkers**. | ||
83 | * **Structured annotation** highlights **biological pathways linked to diagnosis**. | ||
84 | |||
85 | **Axis 3: Neuroanatomoclinical Correlations** | ||
86 | |||
87 | * **MRI and EEG data** provide anatomical and functional insights. | ||
88 | * **AI-generated progression maps** annotate **brain structure-function relationships**. | ||
89 | |||
90 | ---- | ||
91 | |||
92 | === **4. Computational Workflow & Annotation Pipelines** === | ||
93 | |||
94 | ==== **Data Processing Steps** ==== | ||
95 | |||
96 | **Data Ingestion:** | ||
97 | |||
98 | * **Harmonized datasets** stored in **EBRAINS Bucket**. | ||
99 | * **Preprocessing pipelines** clean and standardize data. | ||
100 | |||
101 | **Feature Engineering:** | ||
102 | |||
103 | * **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. | ||
104 | |||
105 | **AI-Generated Annotations:** | ||
106 | |||
107 | * **Automated tagging** of diagnostic features in **structured reports**. | ||
108 | * **Explainability modules (SHAP, LIME)** ensure transparency in predictions. | ||
109 | |||
110 | **Clinical Decision Support Integration:** | ||
111 | |||
112 | * **AI-annotated findings** fed into **interactive dashboards**. | ||
113 | * **Clinicians can adjust, validate, and modify annotations**. | ||
114 | |||
115 | ---- | ||
116 | |||
117 | === **5. Validation & Real-World Testing** === | ||
118 | |||
119 | ==== **Prospective Clinical Study** ==== | ||
120 | |||
121 | * **Multi-center validation** of AI-based **annotations & risk stratifications**. | ||
122 | * **Benchmarking against clinician-based diagnoses**. | ||
123 | * **Real-world testing** of AI-powered **structured reporting**. | ||
124 | |||
125 | ==== **Quality Assurance & Explainability** ==== | ||
126 | |||
127 | * **Annotations linked to structured knowledge graphs** for improved transparency. | ||
128 | * **Interactive annotation editor** allows clinicians to validate AI outputs. | ||
129 | |||
130 | ---- | ||
131 | |||
132 | === **6. Collaborative Development** === | ||
133 | |||
134 | The project is **open to contributions** from **researchers, clinicians, and developers**. | ||
135 | |||
136 | **Key tools include:** | ||
137 | |||
138 | * **Jupyter Notebooks**: For data analysis and pipeline development. | ||
139 | ** Example: **probabilistic imputation** | ||
140 | * **Wiki Pages**: For documenting methods and results. | ||
141 | * **Drive and Bucket**: For sharing code, data, and outputs. | ||
142 | * **Collaboration with related projects**: | ||
143 | ** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** | ||
144 | |||
145 | ---- | ||
146 | |||
147 | === **7. Tools and Technologies** === | ||
148 | |||
149 | ==== **Programming Languages:** ==== | ||
150 | |||
151 | * **Python** for AI and data processing. | ||
152 | |||
153 | ==== **Frameworks:** ==== | ||
154 | |||
155 | * **TensorFlow** and **PyTorch** for machine learning. | ||
156 | * **Flask** or **FastAPI** for backend services. | ||
157 | |||
158 | ==== **Visualization:** ==== | ||
159 | |||
160 | * **Plotly** and **Matplotlib** for interactive and static visualizations. | ||
161 | |||
162 | ==== **EBRAINS Services:** ==== | ||
163 | |||
164 | * **Collaboratory Lab** for running Notebooks. | ||
165 | * **Buckets** for storing large datasets. | ||
166 | |||
167 | ---- | ||
168 | |||
169 | === **Why This Matters** === | ||
170 | |||
171 | * **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.** | ||
172 | * **It enables real-time tracking of disease progression across the three diagnostic axes.** | ||
173 | * **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.** |