Wiki source code of Methodology
Version 6.1 by manuelmenendez on 2025/02/01 11:57
Show last authors
| author | version | line-number | content |
|---|---|---|---|
| 1 | ==== **Overview** ==== | ||
| 2 | |||
| 3 | This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**. | ||
| 4 | |||
| 5 | ---- | ||
| 6 | |||
| 7 | === **1. Data Integration** === | ||
| 8 | |||
| 9 | ==== **Data Sources** ==== | ||
| 10 | |||
| 11 | **Biomedical Ontologies & Databases:** | ||
| 12 | |||
| 13 | * **Human Phenotype Ontology (HPO)** for symptom annotation. | ||
| 14 | * **Gene Ontology (GO)** for molecular and cellular processes. | ||
| 15 | |||
| 16 | **Dimensionality Reduction and Interpretability:** | ||
| 17 | |||
| 18 | * **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. | ||
| 19 | * **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. | ||
| 20 | |||
| 21 | **Neuroimaging & EEG/MEG Data:** | ||
| 22 | |||
| 23 | * **MRI volumetric measures** for brain atrophy tracking. | ||
| 24 | * **EEG functional connectivity patterns** (AI-Mind). | ||
| 25 | |||
| 26 | **Clinical & Biomarker Data:** | ||
| 27 | |||
| 28 | * **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). | ||
| 29 | * **Sleep monitoring and actigraphy data** (ADIS). | ||
| 30 | |||
| 31 | **Federated Learning Integration:** | ||
| 32 | |||
| 33 | * **Secure multi-center data harmonization** (PROMINENT). | ||
| 34 | |||
| 35 | ---- | ||
| 36 | |||
| 37 | ==== **Annotation System for Multi-Modal Data** ==== | ||
| 38 | |||
| 39 | To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: | ||
| 40 | |||
| 41 | * **Assign standardized metadata tags** to diagnostic features. | ||
| 42 | * **Provide contextual explanations** for AI-based classifications. | ||
| 43 | * **Track temporal disease progression annotations** to identify long-term trends. | ||
| 44 | |||
| 45 | ---- | ||
| 46 | |||
| 47 | === **2. AI-Based Analysis** === | ||
| 48 | |||
| 49 | ==== **Machine Learning & Deep Learning Models** ==== | ||
| 50 | |||
| 51 | **Risk Prediction Models:** | ||
| 52 | |||
| 53 | * **LETHE’s cognitive risk prediction model** integrated into the annotation framework. | ||
| 54 | |||
| 55 | **Biomarker Classification & Probabilistic Imputation:** | ||
| 56 | |||
| 57 | * **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. | ||
| 58 | |||
| 59 | **Neuroimaging Feature Extraction:** | ||
| 60 | |||
| 61 | * **MRI & EEG data** annotated with **neuroanatomical feature labels**. | ||
| 62 | |||
| 63 | ==== **AI-Powered Annotation System** ==== | ||
| 64 | |||
| 65 | * Uses **SHAP-based interpretability tools** to explain model decisions. | ||
| 66 | * Generates **automated clinical annotations** in structured reports. | ||
| 67 | * Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). | ||
| 68 | |||
| 69 | ---- | ||
| 70 | |||
| 71 | === **3. Diagnostic Framework & Clinical Decision Support** === | ||
| 72 | |||
| 73 | ==== **Tridimensional Diagnostic Axes** ==== | ||
| 74 | |||
| 75 | **Axis 1: Etiology (Pathogenic Mechanisms)** | ||
| 76 | |||
| 77 | * Classification based on **genetic markers, cellular pathways, and environmental risk factors**. | ||
| 78 | * **AI-assisted annotation** provides **causal interpretations** for clinical use. | ||
| 79 | |||
| 80 | **Axis 2: Molecular Markers & Biomarkers** | ||
| 81 | |||
| 82 | * **Integration of CSF, blood, and neuroimaging biomarkers**. | ||
| 83 | * **Structured annotation** highlights **biological pathways linked to diagnosis**. | ||
| 84 | |||
| 85 | **Axis 3: Neuroanatomoclinical Correlations** | ||
| 86 | |||
| 87 | * **MRI and EEG data** provide anatomical and functional insights. | ||
| 88 | * **AI-generated progression maps** annotate **brain structure-function relationships**. | ||
| 89 | |||
| 90 | ---- | ||
| 91 | |||
| 92 | === **4. Computational Workflow & Annotation Pipelines** === | ||
| 93 | |||
| 94 | ==== **Data Processing Steps** ==== | ||
| 95 | |||
| 96 | **Data Ingestion:** | ||
| 97 | |||
| 98 | * **Harmonized datasets** stored in **EBRAINS Bucket**. | ||
| 99 | * **Preprocessing pipelines** clean and standardize data. | ||
| 100 | |||
| 101 | **Feature Engineering:** | ||
| 102 | |||
| 103 | * **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. | ||
| 104 | |||
| 105 | **AI-Generated Annotations:** | ||
| 106 | |||
| 107 | * **Automated tagging** of diagnostic features in **structured reports**. | ||
| 108 | * **Explainability modules (SHAP, LIME)** ensure transparency in predictions. | ||
| 109 | |||
| 110 | **Clinical Decision Support Integration:** | ||
| 111 | |||
| 112 | * **AI-annotated findings** fed into **interactive dashboards**. | ||
| 113 | * **Clinicians can adjust, validate, and modify annotations**. | ||
| 114 | |||
| 115 | ---- | ||
| 116 | |||
| 117 | === **5. Validation & Real-World Testing** === | ||
| 118 | |||
| 119 | ==== **Prospective Clinical Study** ==== | ||
| 120 | |||
| 121 | * **Multi-center validation** of AI-based **annotations & risk stratifications**. | ||
| 122 | * **Benchmarking against clinician-based diagnoses**. | ||
| 123 | * **Real-world testing** of AI-powered **structured reporting**. | ||
| 124 | |||
| 125 | ==== **Quality Assurance & Explainability** ==== | ||
| 126 | |||
| 127 | * **Annotations linked to structured knowledge graphs** for improved transparency. | ||
| 128 | * **Interactive annotation editor** allows clinicians to validate AI outputs. | ||
| 129 | |||
| 130 | ---- | ||
| 131 | |||
| 132 | === **6. Collaborative Development** === | ||
| 133 | |||
| 134 | The project is **open to contributions** from **researchers, clinicians, and developers**. | ||
| 135 | |||
| 136 | **Key tools include:** | ||
| 137 | |||
| 138 | * **Jupyter Notebooks**: For data analysis and pipeline development. | ||
| 139 | ** Example: **probabilistic imputation** | ||
| 140 | * **Wiki Pages**: For documenting methods and results. | ||
| 141 | * **Drive and Bucket**: For sharing code, data, and outputs. | ||
| 142 | * **Collaboration with related projects**: | ||
| 143 | ** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** | ||
| 144 | |||
| 145 | ---- | ||
| 146 | |||
| 147 | === **7. Tools and Technologies** === | ||
| 148 | |||
| 149 | ==== **Programming Languages:** ==== | ||
| 150 | |||
| 151 | * **Python** for AI and data processing. | ||
| 152 | |||
| 153 | ==== **Frameworks:** ==== | ||
| 154 | |||
| 155 | * **TensorFlow** and **PyTorch** for machine learning. | ||
| 156 | * **Flask** or **FastAPI** for backend services. | ||
| 157 | |||
| 158 | ==== **Visualization:** ==== | ||
| 159 | |||
| 160 | * **Plotly** and **Matplotlib** for interactive and static visualizations. | ||
| 161 | |||
| 162 | ==== **EBRAINS Services:** ==== | ||
| 163 | |||
| 164 | * **Collaboratory Lab** for running Notebooks. | ||
| 165 | * **Buckets** for storing large datasets. | ||
| 166 | |||
| 167 | ---- | ||
| 168 | |||
| 169 | === **Why This Matters** === | ||
| 170 | |||
| 171 | * **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.** | ||
| 172 | * **It enables real-time tracking of disease progression across the three diagnostic axes.** | ||
| 173 | * **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.** |