Wiki source code of Methodology
Version 8.1 by manuelmenendez on 2025/02/01 14:12
Hide last authors
| author | version | line-number | content |
|---|---|---|---|
| |
6.1 | 1 | ==== **Overview** ==== |
| |
1.1 | 2 | |
| |
6.1 | 3 | This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**. |
| |
1.1 | 4 | |
| |
7.1 | 5 | === **Workflow** === |
| 6 | |||
| 7 | 1. ((( | ||
| |
8.1 | 8 | **We Use [[https:~~/~~/github.com/users/manuelmenendezgonzalez/projects/1>>https://GitHub for AI Development]]** |
| |
7.1 | 9 | |
| 10 | * Create a **GitHub repository** for AI scripts and models. | ||
| 11 | * Use **GitHub Projects** to manage research milestones. | ||
| 12 | ))) | ||
| 13 | 1. ((( | ||
| 14 | **We Use EBRAINS for Data & Collaboration** | ||
| 15 | |||
| 16 | * Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. | ||
| 17 | * Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. | ||
| 18 | * Use **EBRAINS Wiki** for structured documentation and research discussion. | ||
| 19 | ))) | ||
| 20 | |||
| |
1.1 | 21 | ---- |
| 22 | |||
| 23 | === **1. Data Integration** === | ||
| 24 | |||
| 25 | ==== **Data Sources** ==== | ||
| 26 | |||
| |
6.1 | 27 | **Biomedical Ontologies & Databases:** |
| |
1.1 | 28 | |
| |
6.1 | 29 | * **Human Phenotype Ontology (HPO)** for symptom annotation. |
| 30 | * **Gene Ontology (GO)** for molecular and cellular processes. | ||
| |
4.2 | 31 | |
| |
6.1 | 32 | **Dimensionality Reduction and Interpretability:** |
| |
1.1 | 33 | |
| |
6.1 | 34 | * **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. |
| 35 | * **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. | ||
| |
1.1 | 36 | |
| |
6.1 | 37 | **Neuroimaging & EEG/MEG Data:** |
| 38 | |||
| 39 | * **MRI volumetric measures** for brain atrophy tracking. | ||
| 40 | * **EEG functional connectivity patterns** (AI-Mind). | ||
| 41 | |||
| 42 | **Clinical & Biomarker Data:** | ||
| 43 | |||
| 44 | * **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). | ||
| 45 | * **Sleep monitoring and actigraphy data** (ADIS). | ||
| 46 | |||
| 47 | **Federated Learning Integration:** | ||
| 48 | |||
| 49 | * **Secure multi-center data harmonization** (PROMINENT). | ||
| 50 | |||
| |
1.1 | 51 | ---- |
| 52 | |||
| |
6.1 | 53 | ==== **Annotation System for Multi-Modal Data** ==== |
| 54 | |||
| 55 | To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: | ||
| 56 | |||
| 57 | * **Assign standardized metadata tags** to diagnostic features. | ||
| 58 | * **Provide contextual explanations** for AI-based classifications. | ||
| 59 | * **Track temporal disease progression annotations** to identify long-term trends. | ||
| 60 | |||
| 61 | ---- | ||
| 62 | |||
| |
1.1 | 63 | === **2. AI-Based Analysis** === |
| 64 | |||
| |
6.1 | 65 | ==== **Machine Learning & Deep Learning Models** ==== |
| |
1.1 | 66 | |
| |
6.1 | 67 | **Risk Prediction Models:** |
| |
1.1 | 68 | |
| |
6.1 | 69 | * **LETHE’s cognitive risk prediction model** integrated into the annotation framework. |
| |
1.1 | 70 | |
| |
6.1 | 71 | **Biomarker Classification & Probabilistic Imputation:** |
| |
1.1 | 72 | |
| |
6.1 | 73 | * **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. |
| 74 | |||
| 75 | **Neuroimaging Feature Extraction:** | ||
| 76 | |||
| 77 | * **MRI & EEG data** annotated with **neuroanatomical feature labels**. | ||
| 78 | |||
| 79 | ==== **AI-Powered Annotation System** ==== | ||
| 80 | |||
| 81 | * Uses **SHAP-based interpretability tools** to explain model decisions. | ||
| 82 | * Generates **automated clinical annotations** in structured reports. | ||
| 83 | * Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). | ||
| 84 | |||
| |
1.1 | 85 | ---- |
| 86 | |||
| |
6.1 | 87 | === **3. Diagnostic Framework & Clinical Decision Support** === |
| |
1.1 | 88 | |
| |
6.1 | 89 | ==== **Tridimensional Diagnostic Axes** ==== |
| |
1.1 | 90 | |
| |
6.1 | 91 | **Axis 1: Etiology (Pathogenic Mechanisms)** |
| |
1.1 | 92 | |
| |
6.1 | 93 | * Classification based on **genetic markers, cellular pathways, and environmental risk factors**. |
| 94 | * **AI-assisted annotation** provides **causal interpretations** for clinical use. | ||
| |
1.1 | 95 | |
| |
6.1 | 96 | **Axis 2: Molecular Markers & Biomarkers** |
| |
1.1 | 97 | |
| |
6.1 | 98 | * **Integration of CSF, blood, and neuroimaging biomarkers**. |
| 99 | * **Structured annotation** highlights **biological pathways linked to diagnosis**. | ||
| |
1.1 | 100 | |
| |
6.1 | 101 | **Axis 3: Neuroanatomoclinical Correlations** |
| 102 | |||
| 103 | * **MRI and EEG data** provide anatomical and functional insights. | ||
| 104 | * **AI-generated progression maps** annotate **brain structure-function relationships**. | ||
| 105 | |||
| |
1.1 | 106 | ---- |
| 107 | |||
| |
6.1 | 108 | === **4. Computational Workflow & Annotation Pipelines** === |
| |
1.1 | 109 | |
| |
6.1 | 110 | ==== **Data Processing Steps** ==== |
| |
1.1 | 111 | |
| |
6.1 | 112 | **Data Ingestion:** |
| 113 | |||
| 114 | * **Harmonized datasets** stored in **EBRAINS Bucket**. | ||
| 115 | * **Preprocessing pipelines** clean and standardize data. | ||
| 116 | |||
| 117 | **Feature Engineering:** | ||
| 118 | |||
| 119 | * **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. | ||
| 120 | |||
| 121 | **AI-Generated Annotations:** | ||
| 122 | |||
| 123 | * **Automated tagging** of diagnostic features in **structured reports**. | ||
| 124 | * **Explainability modules (SHAP, LIME)** ensure transparency in predictions. | ||
| 125 | |||
| 126 | **Clinical Decision Support Integration:** | ||
| 127 | |||
| 128 | * **AI-annotated findings** fed into **interactive dashboards**. | ||
| 129 | * **Clinicians can adjust, validate, and modify annotations**. | ||
| 130 | |||
| |
1.1 | 131 | ---- |
| 132 | |||
| |
6.1 | 133 | === **5. Validation & Real-World Testing** === |
| |
1.1 | 134 | |
| |
6.1 | 135 | ==== **Prospective Clinical Study** ==== |
| |
1.1 | 136 | |
| |
6.1 | 137 | * **Multi-center validation** of AI-based **annotations & risk stratifications**. |
| 138 | * **Benchmarking against clinician-based diagnoses**. | ||
| 139 | * **Real-world testing** of AI-powered **structured reporting**. | ||
| |
1.1 | 140 | |
| |
6.1 | 141 | ==== **Quality Assurance & Explainability** ==== |
| |
1.1 | 142 | |
| |
6.1 | 143 | * **Annotations linked to structured knowledge graphs** for improved transparency. |
| 144 | * **Interactive annotation editor** allows clinicians to validate AI outputs. | ||
| |
1.1 | 145 | |
| 146 | ---- | ||
| 147 | |||
| 148 | === **6. Collaborative Development** === | ||
| 149 | |||
| |
6.1 | 150 | The project is **open to contributions** from **researchers, clinicians, and developers**. |
| |
1.1 | 151 | |
| |
6.1 | 152 | **Key tools include:** |
| 153 | |||
| |
1.1 | 154 | * **Jupyter Notebooks**: For data analysis and pipeline development. |
| |
6.1 | 155 | ** Example: **probabilistic imputation** |
| |
1.1 | 156 | * **Wiki Pages**: For documenting methods and results. |
| 157 | * **Drive and Bucket**: For sharing code, data, and outputs. | ||
| |
6.1 | 158 | * **Collaboration with related projects**: |
| 159 | ** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** | ||
| |
1.1 | 160 | |
| 161 | ---- | ||
| 162 | |||
| 163 | === **7. Tools and Technologies** === | ||
| 164 | |||
| |
6.1 | 165 | ==== **Programming Languages:** ==== |
| 166 | |||
| 167 | * **Python** for AI and data processing. | ||
| 168 | |||
| 169 | ==== **Frameworks:** ==== | ||
| 170 | |||
| 171 | * **TensorFlow** and **PyTorch** for machine learning. | ||
| 172 | * **Flask** or **FastAPI** for backend services. | ||
| 173 | |||
| 174 | ==== **Visualization:** ==== | ||
| 175 | |||
| 176 | * **Plotly** and **Matplotlib** for interactive and static visualizations. | ||
| 177 | |||
| 178 | ==== **EBRAINS Services:** ==== | ||
| 179 | |||
| 180 | * **Collaboratory Lab** for running Notebooks. | ||
| 181 | * **Buckets** for storing large datasets. | ||
| 182 | |||
| 183 | ---- | ||
| 184 | |||
| 185 | === **Why This Matters** === | ||
| 186 | |||
| 187 | * **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.** | ||
| 188 | * **It enables real-time tracking of disease progression across the three diagnostic axes.** | ||
| 189 | * **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.** |