Changes for page to-do-list

Last modified by manuelmenendez on 2025/02/08 17:21

From version 1.1
edited by manuelmenendez
on 2025/01/29 18:38
Change comment: There is no comment for this version
To version 1.3
edited by manuelmenendez
on 2025/01/29 18:43
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,30 +1,78 @@
1 -== xHeadings Will Appear in Table of Content ==
1 +== **1. Data Management & Integration** ==
2 2  
3 +* Upload and organize harmonized biomarker datasets (PROMINENT).
4 +* Store EEG, sleep, and neuroimaging data in the EBRAINS Bucket.
5 +* Convert all datasets to .csv, .json, or .h5 formats for easier AI processing.
6 +* Implement automated data ingestion scripts to streamline updates from new sources.
7 +* Set up data harmonization methods to ensure consistency across different sources.
8 +* Enable Federated Learning to train AI models on multi-center data without sharing raw patient data (GDPR-compliant).
3 3  
4 -Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
10 +== **2. AI-Based Risk Prediction & Diagnosis** ==
5 5  
6 ->This is a quote. You can add a quote by selecting some text and clicking the quote button in the editor.
12 +* Implement machine learning models for dementia risk stratification (LETHE).
13 +* Develop AI-based probabilistic models for filling in missing data (KNN Imputer, Bayesian approaches).
14 +* Train AI models using multi-modal data (biomarkers, EEG, MRI, and lifestyle factors).
15 +* Store pretrained models in the /models/ directory for future use.
16 +* Implement real-time AI-based diagnostic annotation for clinicians.
17 +* Add confidence intervals to AI predictions for clinical decision support.
18 +* Integrate Explainable AI (SHAP analysis) to ensure transparency and clinician trust.
19 +* Implement deep learning for pattern recognition in neuroimaging data (MRI/PET-based feature extraction).
20 +* Explore the use of Large Language Models (LLMs) for medical report summarization.
7 7  
8 -Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
22 +== **3. EEG, Neuroimaging & Sleep Analysis** ==
9 9  
10 -=== H3 Headings Will Appear In The Table of Content ===
24 +* Process EEG/MEG data using MNE-Python (AI-Mind).
25 +* Apply EEG biomarkers for dementia detection (spectral analysis, connectivity metrics).
26 +* Integrate sleep monitoring data from ADIS (smartwatches, headbands) as an early biomarker.
27 +* Use MRI volumetric analysis for assessing brain atrophy in high-risk patients.
28 +* Implement functional MRI (fMRI) analysis to link neuroanatomical changes with cognitive function.
11 11  
12 -==== You can also add images ====
30 +== **4. Clinical Validation & Pilot Testing** ==
13 13  
14 -[[image:Collaboratory.Apps.Article.Code.ArticleSheet@placeholder.jpg]]
32 +* Design a pilot study to validate AI-generated diagnostic scores.
33 +* Recruit a multicenter clinical validation cohort across European research hospitals.
34 +* Compare AI-based diagnoses with clinician-based diagnoses to measure performance.
35 +* Develop validation metrics (e.g., AUROC, precision-recall, false positive rates).
36 +* Conduct a prospective study to test predictive accuracy over time.
37 +* Implement clinician feedback loops to refine the AI model based on real-world usage.
38 +* Publish validation results in peer-reviewed journals for credibility.
15 15  
16 -Photo by David Clode
40 +== **5. Ethical, Regulatory & GDPR Compliance** ==
17 17  
18 -==== Or code ====
42 +* Ensure AI models comply with the EU AI Act for medical applications.
43 +* Implement privacy-preserving AI techniques (Federated Learning, Differential Privacy).
44 +* Develop patient data anonymization pipelines before AI processing.
45 +* Secure ethics approval for data usage in clinical applications.
46 +* Set up consent management systems for patient data contributions.
47 +* Ensure interoperability with hospital Electronic Health Records (EHRs).
19 19  
20 -Code blocks can be added by using the code macro:
49 +== **6. EBRAINS Deployment & Cloud Infrastructure** ==
21 21  
22 -{{code language="python"}}
23 -x = 1
24 -if x == 1:
25 - # indented four spaces
26 - print("x is 1.")
27 -{{/code}}
51 +* Deploy AI models on EBRAINS Cloud for real-time inference.
52 +* Set up Jupyter Notebooks in EBRAINS Lab for collaborative development.
53 +* Automate model training pipelines using GitHub Actions or EBRAINS’ HPC.
54 +* Optimize computational efficiency to ensure AI inference runs on real-time clinical data.
28 28  
29 -(% class="wikigeneratedid" id="HH4Won27tAppearinToC" %)
30 -
56 +== **7. Interactive Web App for Clinicians & Researchers** ==
57 +
58 +* Develop an interactive web-based AI diagnostic tool (Flask, FastAPI, or Streamlit).
59 +* Allow clinicians to input biomarker data and get real-time AI predictions.
60 +* Enable PDF report generation for clinical decision-making.
61 +* Integrate custom dashboards with risk stratification results.
62 +* Deploy the tool on **neurodiagnoses.com** using Netlify, Vercel, or AWS.
63 +
64 +== **8. Cross-Project Collaborations** ==
65 +
66 +* Partner with AI-Mind for integrating EEG-based predictive models.
67 +* Collaborate with LETHE on lifestyle-based cognitive decline risk scoring.
68 +* Use PROMINENT’s multi-modal AI pipeline for refining dementia subtype classification.
69 +* Leverage ADIS sleep monitoring research for non-invasive biomarker expansion.
70 +* Expand partnerships with clinical institutions to increase dataset size.
71 +
72 +== **9. Long-Term Expansion & Future Goals** ==
73 +
74 +* Explore AI-powered disease progression models for tracking neurodegeneration over time.
75 +* Develop real-time multimodal patient monitoring (EEG, MRI, biomarkers, lifestyle).
76 +* Investigate genomics and proteomics for precision diagnostics.
77 +* Integrate wearable health tracking for continuous cognitive assessment.
78 +* Create an open-access AI diagnostic API for global research collaborations.