... |
... |
@@ -8,3 +8,22 @@ |
8 |
8 |
|
9 |
9 |
https://www.youtube.com/watch?v=zBLNfJiEvRc (16 minutes) |
10 |
10 |
\\In this tutorial, you will learn how to build a simple network of integrate-and-fire neurons using PyNN, how to run simulation experiments with this network using different simulators, and how to visualize the data generated by these experiments. ~[[[More information>>doc:.Building and simulating a simple model.WebHome]]] |
|
11 |
+ |
|
12 |
+ |
|
13 |
+== Planned tutorials == |
|
14 |
+ |
|
15 |
+Tutorials 1-3 should be followed in sequence. Following this, the remaining, more advanced, tutorials can be followed in any order. |
|
16 |
+ |
|
17 |
+* [[1. Introduction to PyNN>>doc:.Tutorials.Introduction to PyNN.WebHome]] |
|
18 |
+* [[2. Installing PyNN>>doc:.Tutorials.Installing PyNN.WebHome]] |
|
19 |
+** b) on Mac OS |
|
20 |
+** c) on Windows |
|
21 |
+** d) in the EBRAINS Jupyter Lab |
|
22 |
+* [[4. Recording and data handling>>doc:.Tutorials.Recording and data handling.WebHome]] |
|
23 |
+* [[5. Structuring larger models>>doc:.Tutorials.Structuring larger models.WebHome]] |
|
24 |
+* [[6. Models with spatial structure>>doc:.Tutorials.Models with spatial structure.WebHome]] |
|
25 |
+* [[7. Synaptic plasticity>>doc:.Tutorials.Synaptic plasticity.WebHome]] |
|
26 |
+* [[8. Randomness and reproducibility>>doc:.Tutorials.Randomness and reproducibility.WebHome]] |
|
27 |
+* [[9. Running parallel simulations>>doc:.Tutorials.Running parallel simulations.WebHome]] |
|
28 |
+ |
|
29 |
+ |