Last modified by adavison on 2022/10/04 13:55

From version 10.2
edited by adavison
on 2021/08/04 16:19
Change comment: There is no comment for this version
To version 11.4
edited by adavison
on 2021/09/30 14:18
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -106,21 +106,215 @@
106 106  (% style="color:#000000" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
107 107  (% style="color:#e74c3c" %)population1 = sim.Population(100, cell_type, label="Population 1")
108 108  population1.record("v")
109 -sim.run(100.0)
109 +sim.run(100.0)(%%)
110 +\\**Run script in terminal**
110 110  )))
111 111  
112 112  PyNN has some built-in tools for making simple plots, so let's import those, and plot the membrane voltage of the zeroth neuron in our population (remember Python starts counting at zero).
113 113  
115 +(% class="box infomessage" %)
116 +(((
117 +**Screencast** - current state of editor
118 +\\(% style="color:#000000" %)"""Simple network model using PyNN"""
119 +\\import pyNN.nest as sim(%%)
120 +(% style="color:#e74c3c" %)from pyNN.utility.plotting import Figure, Panel(%%)
121 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
122 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
123 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")
124 +population1.record("v")
125 +sim.run(100.0)(%%)
126 +(% style="color:#e74c3c" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
127 +Figure(
128 + Panel(
129 + data_v[:, 0],
130 + xticks=True, xlabel="Time (ms)",
131 + yticks=True, ylabel="Membrane potential (mV)"
132 + ),
133 + title="Response of neuron #0",
134 + annotations="Simulated with NEST"
135 +).show()(%%)
136 +\\**Run script in terminal, show figure**
137 +)))
138 +
114 114  As you'd expect, the bias current causes the membrane voltage to increase until it reaches threshold~-~--it doesn't increase in a straight line because it's a //leaky// integrate-and-fire neuron~-~--then once it hits the threshold the voltage is reset, and then stays at the same level for a short time~-~--this is the refractory period~-~--before it starts to increase again.
115 115  
116 116  Now, all 100 neurons in our population are identical, so if we plotted the first neuron, the second neuron, ..., we'd get the same trace.
117 117  
118 -Let's change that. In nature every neuron is a little bit different, so let's set the resting membrane potential and the spike threshold randomly from a Gaussian distribution, and let's plot membrane voltage from _all_ the  neurons.
143 +(% class="box infomessage" %)
144 +(((
145 +**Screencast** - current state of editor
146 +\\(% style="color:#000000" %)"""Simple network model using PyNN"""
147 +\\import pyNN.nest as sim(%%)
148 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
149 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
150 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
151 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")
152 +population1.record("v")
153 +sim.run(100.0)(%%)
154 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
155 +Figure(
156 + Panel(
157 + data_v[:, (% style="color:#e74c3c" %)0:5(% style="color:#000000" %)],
158 + xticks=True, xlabel="Time (ms)",
159 + yticks=True, ylabel="Membrane potential (mV)"
160 + ),
161 + title="Response of (% style="color:#e74c3c" %)first five neurons(% style="color:#000000" %)",
162 + annotations="Simulated with NEST"
163 +).show()(%%)
164 +\\**Run script in terminal, show figure**
165 +)))
119 119  
167 +Let's change that. In nature every neuron is a little bit different, so let's set the resting membrane potential and the spike threshold randomly from a Gaussian distribution.
168 +
169 +(% class="box infomessage" %)
170 +(((
171 +**Screencast** - current state of editor
172 +\\(% style="color:#000000" %)"""Simple network model using PyNN"""
173 +\\import pyNN.nest as sim(%%)
174 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
175 +(% style="color:#e74c3c" %)from pyNN.random import RandomDistribution(%%)
176 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
177 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
178 + (% style="color:#e74c3c" %) v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}),
179 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
180 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
181 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
182 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")
183 +population1.record("v")
184 +sim.run(100.0)(%%)
185 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
186 +Figure(
187 + Panel(
188 + data_v[:, 0:5],
189 + xticks=True, xlabel="Time (ms)",
190 + yticks=True, ylabel="Membrane potential (mV)"
191 + ),
192 + title="Response of first five neurons (% style="color:#e74c3c" %)with heterogeneous parameters(% style="color:#000000" %)",
193 + annotations="Simulated with NEST"
194 +).show()(%%)
195 +\\**Run script in terminal, show figure**
196 +)))
197 +
120 120  Now if we run our simulation again, we can see the effect of this heterogeneity in the neuron population.
121 121  
122 -TO BE COMPLETED
200 +(% class="box successmessage" %)
201 +(((
202 +**Slide** showing addition of second population, and of connections between them
203 +)))
123 123  
205 +(% class="wikigeneratedid" %)
206 +So far we have a population of neurons, but there are no connections between them, we don't have a network. Let's add a second population of the same size as the first, but we'll set the offset current to zero, so they don't fire action potentials spontaneously.
207 +
208 +(% class="box infomessage" %)
209 +(((
210 +**Screencast** - current state of editor
211 +\\(% style="color:#000000" %)"""Simple network model using PyNN"""
212 +\\import pyNN.nest as sim(%%)
213 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
214 +(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%)
215 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
216 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
217 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}),
218 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
219 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
220 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
221 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
222 +(% style="color:#e74c3c" %)population2 = sim.Population(100, cell_type, label="Population 2")
223 +population2.set(i_offset=0)(%%)
224 +(% style="color:#000000" %)population1.record("v")(%%)
225 +(% style="color:#e74c3c" %)population2.record("v")(%%)
226 +(% style="color:#000000" %)sim.run(100.0)(%%)
227 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
228 +Figure(
229 + Panel(
230 + data_v[:, 0:5],
231 + xticks=True, xlabel="Time (ms)",
232 + yticks=True, ylabel="Membrane potential (mV)"
233 + ),
234 + title="Response of first five neurons with heterogeneous parameters",
235 + annotations="Simulated with NEST"
236 +).show()(%%)
237 +\\**Run script in terminal, show figure**
238 +)))
239 +
240 +Now we want to create synaptic connections between the neurons in Population 1 and those in Population 2. There are lots of different ways these could be connected.
241 +
242 +(% class="box successmessage" %)
243 +(((
244 +**Slide** showing all-to-all connections
245 +)))
246 +
247 +We could connect all neurons in Population 1 to all those in Population 2.
248 +
249 +(% class="box successmessage" %)
250 +(((
251 +**Slide** showing random connections
252 +)))
253 +
254 +We could connect the populations randomly, in several different ways.
255 +
256 +(% class="box successmessage" %)
257 +(((
258 +**Slide** showing distance-dependent connections
259 +)))
260 +
261 +(% class="wikigeneratedid" %)
262 +We could connect the populations randomly, but with a probability of connection that depends on the distance between the neurons.
263 +
264 +(% class="box successmessage" %)
265 +(((
266 +**Slide** showing explicit lists of connections
267 +)))
268 +
269 +(% class="wikigeneratedid" %)
270 +Or we could connect the neurons in a very specific manner, based on an explicit list of connections.
271 +
272 +(% class="wikigeneratedid" %)
273 +Just as PyNN provides a variety of neuron models, so it comes with a range of connection algorithms built in. You can also add your own connection methods.
274 +
275 +(% class="box successmessage" %)
276 +(((
277 +**Slide** showing addition of second population, and of connections between them, labelled as a Projection.
278 +)))
279 +
280 +(% class="wikigeneratedid" %)
281 +In PyNN, we call a group of connections between two populations a _Projection_. To create a Projection, we need to specify the presynaptic population, the postsynaptic population, the connection algorithm, and the synapse model. Here we're using the simplest synapse model available in PyNN, for which the synaptic weight is constant over time, there is no plasticity.
282 +
283 +(% class="box infomessage" %)
284 +(((
285 +**Screencast** - current state of editor
286 +\\(% style="color:#000000" %)"""Simple network model using PyNN"""
287 +\\import pyNN.nest as sim(%%)
288 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
289 +(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%)
290 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
291 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
292 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}),
293 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
294 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
295 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
296 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
297 +(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2")
298 +population2.set(i_offset=0)
299 +population1.record("v")
300 +population2.record("v")(%%)
301 +(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5)
302 +synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5)
303 +connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%)
304 +(% style="color:#000000" %)sim.run(100.0)(%%)
305 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
306 +Figure(
307 + Panel(
308 + data_v[:, 0:5],
309 + xticks=True, xlabel="Time (ms)",
310 + yticks=True, ylabel="Membrane potential (mV)"
311 + ),
312 + title="Response of first five neurons with heterogeneous parameters",
313 + annotations="Simulated with NEST"
314 +).show()(%%)
315 +\\**Run script in terminal, show figure**
316 +)))
317 +
124 124  (% class="wikigeneratedid" id="HSummary28Inthistutorial2CyouhavelearnedtodoX202629" %)
125 125  (% class="small" %)**Summary (In this tutorial, you have learned to do X…)**
126 126