Changes for page 03. Building and simulating a simple model
Last modified by adavison on 2022/10/04 13:55
From version 10.2
edited by adavison
on 2021/08/04 16:19
on 2021/08/04 16:19
Change comment:
There is no comment for this version
To version 16.1
edited by annedevismes
on 2021/10/18 10:26
on 2021/10/18 10:26
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki.ad avison1 +XWiki.annedevismes - Content
-
... ... @@ -9,11 +9,11 @@ 9 9 10 10 == Audience == 11 11 12 -This tutorial is intended for people with at least a basic knowledge of neuroscience (high ,and how it differs from other simulation tools they know.12 +This tutorial is intended for people with at least a basic knowledge of neuroscience (high-school level or above) and basic familiarity with the Python programming language. It should also be helpful for people who already have advanced knowledge of neuroscience and neural simulation, who simply wish to learn how to use PyNN and how it differs from other simulation tools they know. 13 13 14 14 == Prerequisites == 15 15 16 -To follow this tutorial, you need a basic knowledge of neuroscience (high-school level or greater), basic familiarity with the Python programming language, and either a computer with PyNN, NEST, NEURON and Brian 2 installed ,or an EBRAINS account and basic familiarity with Jupyter notebooks. If you don't have these tools installed, see one of our previous tutorials which guide you through the installation.16 +To follow this tutorial, you need a basic knowledge of neuroscience (high-school level or greater), basic familiarity with the Python programming language, and either a computer with PyNN, NEST, NEURON, and Brian 2 installed or an EBRAINS account and basic familiarity with Jupyter notebooks. If you don't have these tools installed, see one of our previous tutorials which guide you through the installation. 17 17 18 18 == Format == 19 19 ... ... @@ -66,13 +66,13 @@ 66 66 **Screencast** - blank document in editor 67 67 ))) 68 68 69 -In this video, you'll see my editor on the left ,andon the rightmy terminal and my file browser. I'll be writing code in the editor,and then running my scripts in the terminal. You're welcome to follow along~-~--you can pause the video at any time if I'm going too fast~-~--or you can just watch.69 +In this video, you'll see my editor on the left and my terminal and my file browser on the right. I'll be writing code in the editor and then running my scripts in the terminal. You're welcome to follow along~-~--you can pause the video at any time if I'm going too fast~-~--or you can just watch. 70 70 71 -Let's start by writing a docstring ,"Simple network model using PyNN".71 +Let's start by writing a docstring "Simple network model using PyNN". 72 72 73 -For now, we're going to use the NEST simulator to simulate this model ,so we import the PyNN-for-NEST module.73 +For now, we're going to use the NEST simulator to simulate this model; so, we import the PyNN-for-NEST module. 74 74 75 -Like with any numerical model, we need to break time down into small steps ,so let's set that up with steps of 0.1 milliseconds.75 +Like with any numerical model, we need to break time down into small steps; so let's set that up with steps of 0.1 milliseconds. 76 76 77 77 (% class="box infomessage" %) 78 78 ((( ... ... @@ -95,7 +95,7 @@ 95 95 (% style="color:#e74c3c" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1) 96 96 ))) 97 97 98 -Let's create 100 of these neurons ,then we're going to record the membrane voltage,and run a simulation for 100 milliseconds.98 +Let's create 100 of these neurons; then, we're going to record the membrane voltage and run a simulation for 100 milliseconds. 99 99 100 100 (% class="box infomessage" %) 101 101 ((( ... ... @@ -106,37 +106,264 @@ 106 106 (% style="color:#000000" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 107 107 (% style="color:#e74c3c" %)population1 = sim.Population(100, cell_type, label="Population 1") 108 108 population1.record("v") 109 -sim.run(100.0) 109 +sim.run(100.0)(%%) 110 +\\**Run script in terminal** 110 110 ))) 111 111 112 112 PyNN has some built-in tools for making simple plots, so let's import those, and plot the membrane voltage of the zeroth neuron in our population (remember Python starts counting at zero). 113 113 114 -As you'd expect, the bias current causes the membrane voltage to increase until it reaches threshold~-~--it doesn't increase in a straight line because it's a //leaky// integrate-and-fire neuron~-~--then once it hits the threshold the voltage is reset, and then stays at the same level for a short time~-~--this is the refractory period~-~--before it starts to increase again. 115 +(% class="box infomessage" %) 116 +((( 117 +**Screencast** - current state of editor 118 +\\(% style="color:#000000" %)"""Simple network model using PyNN""" 119 +\\import pyNN.nest as sim(%%) 120 +(% style="color:#e74c3c" %)from pyNN.utility.plotting import Figure, Panel(%%) 121 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 122 +(% style="color:#000000" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 123 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1") 124 +population1.record("v") 125 +sim.run(100.0)(%%) 126 +(% style="color:#e74c3c" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 127 +Figure( 128 + Panel( 129 + data_v[:, 0], 130 + xticks=True, xlabel="Time (ms)", 131 + yticks=True, ylabel="Membrane potential (mV)" 132 + ), 133 + title="Response of neuron #0", 134 + annotations="Simulated with NEST" 135 +).show()(%%) 136 +\\**Run script in terminal, show figure** 137 +))) 115 115 116 - Now, all100 neuronsinourpopulationare identical,soifweplottedthefirst neuron, thesecondneuron,...,we'dget the same trace.139 +As you'd expect, the bias current causes the membrane voltage to increase until it reaches threshold~-~--it doesn't increase in a straight line because it's a //leaky// integrate-and-fire neuron~-~--then, once it hits the threshold, the voltage is reset and then stays at the same level for a short time~-~--this is the refractory period~-~--before it starts to increase again. 117 117 118 - Let'schangethat.Innatureevery neuron isalittlebitdifferent,solet'sset the restingmembranepotentialandthe spikethreshold randomlyfrom a Gaussiandistribution,andlet'splotmembranevoltagefrom _all_ theneurons.141 +Now, all 100 neurons in our population are identical; so, if we plotted the first neuron, the second neuron, ..., we'd get the same trace. 119 119 120 -Now if we run our simulation again, we can see the effect of this heterogeneity in the neuron population. 143 +(% class="box infomessage" %) 144 +((( 145 +**Screencast** - changes in editor 146 + 121 121 122 -TO BE COMPLETED 148 +**...** 149 +(% style="color:#000000" %)Figure( 150 + Panel( 151 + data_v[:, (% style="color:#e74c3c" %)0:5(% style="color:#000000" %)], 152 + xticks=True, xlabel="Time (ms)", 153 + yticks=True, ylabel="Membrane potential (mV)" 154 + ), 155 + title="Response of (% style="color:#e74c3c" %)first five neurons(% style="color:#000000" %)", 156 + annotations="Simulated with NEST" 157 +).show()(%%) 158 +\\**Run script in terminal, show figure** 159 +))) 123 123 124 -(% class="wikigeneratedid" id="HSummary28Inthistutorial2CyouhavelearnedtodoX202629" %) 125 -(% class="small" %)**Summary (In this tutorial, you have learned to do X…)** 161 +Let's change that. In nature, every neuron is a little bit different; so, let's set the resting membrane potential and the spike threshold randomly from a Gaussian distribution. 126 126 127 -. 163 +(% class="box infomessage" %) 164 +((( 165 +**Screencast** - changes in editor 166 +\\(% style="color:#000000" %)"""Simple network model using PyNN""" 167 +\\import pyNN.nest as sim(%%) 168 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 169 +(% style="color:#e74c3c" %)from pyNN.random import RandomDistribution(%%) 170 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 171 +(% style="color:#000000" %)cell_type = sim.IF_curr_exp( 172 + (% style="color:#e74c3c" %) v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), 173 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 174 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 175 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 176 + 128 128 129 - (% class="wikigeneratedid" id="HAcknowledgementsifappropriate" %)130 - (%class="small" %)**Acknowledgements if appropriate**178 +**...** 179 + 131 131 132 -. 181 +(% style="color:#000000" %)Figure( 182 + Panel( 183 + data_v[:, 0:5], 184 + xticks=True, xlabel="Time (ms)", 185 + yticks=True, ylabel="Membrane potential (mV)" 186 + ), 187 + title="Response of first five neurons (% style="color:#e74c3c" %)with heterogeneous parameters(% style="color:#000000" %)", 188 + annotations="Simulated with NEST" 189 +).show()(%%) 190 +\\**Run script in terminal, show figure** 191 +))) 133 133 134 -(% class="wikigeneratedid" id="HReferencestowebsites28Formoreinformation2Cvisitusat202629" %) 135 -(% class="small" %)**References to websites (For more information, visit us at…)** 193 +Now, if we run our simulation again, we can see the effect of this heterogeneity in the neuron population. 136 136 137 -. 195 +(% class="box successmessage" %) 196 +((( 197 +**Slide** showing addition of second population and of connections between them 198 +))) 138 138 139 -(% class="wikigeneratedid" id="HContactinformation28Forquestions2Ccontactusat202629"%)140 - (%class="small"%)**Contactformation(Forquestions,contactusat…)**200 +(% class="wikigeneratedid" %) 201 +So far, we have a population of neurons, but there are no connections between them, we don't have a network. Let's add a second population of the same size as the first, but we'll set the offset current to zero, so they don't fire action potentials spontaneously. 141 141 142 -. 203 +(% class="box infomessage" %) 204 +((( 205 +**Screencast** - changes in editor 206 +\\**...** 207 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 208 +(% style="color:#e74c3c" %)population2 = sim.Population(100, cell_type, label="Population 2") 209 +population2.set(i_offset=0)(%%) 210 +(% style="color:#000000" %)population1.record("v")(%%) 211 +(% style="color:#e74c3c" %)population2.record("v")(%%) 212 +(% style="color:#000000" %)sim.run(100.0)(%%) 213 +**...** 214 +))) 215 + 216 +Now, we want to create synaptic connections between the neurons in Population 1 and those in Population 2. There are lots of different ways these could be connected. 217 + 218 +(% class="box successmessage" %) 219 +((( 220 +**Slide** showing all-to-all connections 221 +))) 222 + 223 +We could connect all neurons in Population 1 to all those in Population 2. 224 + 225 +(% class="box successmessage" %) 226 +((( 227 +**Slide** showing random connections 228 +))) 229 + 230 +We could connect the populations randomly, in several different ways. 231 + 232 +(% class="box successmessage" %) 233 +((( 234 +**Slide** showing distance-dependent connections 235 +))) 236 + 237 +(% class="wikigeneratedid" %) 238 +We could connect the populations randomly, but with a probability of connection that depends on the distance between the neurons. 239 + 240 +(% class="box successmessage" %) 241 +((( 242 +**Slide** showing explicit lists of connections 243 +))) 244 + 245 +(% class="wikigeneratedid" %) 246 +Or we could connect the neurons in a very specific manner, based on an explicit list of connections. 247 + 248 +(% class="wikigeneratedid" %) 249 +Just as PyNN provides a variety of neuron models, so it comes with a range of connection algorithms built in. You can also add your own connection methods. 250 + 251 +(% class="box successmessage" %) 252 +((( 253 +**Slide** showing addition of second population, and of connections between them, labelled as a Projection. 254 +))) 255 + 256 +(% class="wikigeneratedid" %) 257 +In PyNN, we call a group of connections between two populations a _Projection_. To create a Projection, we need to specify the presynaptic population, the postsynaptic population, the connection algorithm, and the synapse model. Here, we're using the simplest synapse model available in PyNN, for which the synaptic weight is constant over time; there is no plasticity. 258 + 259 +(% class="box infomessage" %) 260 +((( 261 +**Screencast** - changes in editor 262 + 263 + 264 +**...** 265 +(% style="color:#000000" %)population2.record("v")(%%) 266 +(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5) 267 +synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 268 +connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 269 +(% style="color:#000000" %)sim.run(100.0)(%%) 270 +**...** 271 +))) 272 + 273 +(% class="wikigeneratedid" %) 274 +Finally, let's update our figure, by adding a second panel to show the responses of Population 2. 275 + 276 +(% class="box infomessage" %) 277 +((( 278 +**Screencast** - changes in editor 279 +\\**...** 280 +(% style="color:#000000" %)sim.run(100.0)(%%) 281 +(% style="color:#e74c3c" %)data1_v(% style="color:#000000" %) = population1.get_data().segments[0].filter(name='v')[0](%%) 282 +(% style="color:#e74c3c" %)data2_v = population2.get_data().segments[0].filter(name='v')[0](%%) 283 +(% style="color:#000000" %)Figure( 284 + Panel( 285 + (% style="color:#e74c3c" %)data1_v(% style="color:#000000" %)[:, 0:5], 286 + xticks=True, (% style="color:#e74c3c" %)--xlabel="Time (ms)",--(%%) 287 +(% style="color:#000000" %) yticks=True, ylabel="Membrane potential (mV)" 288 + ), 289 + (% style="color:#e74c3c" %)Panel( 290 + data2_v[:, 0:5], 291 + xticks=True, xlabel="Time (ms)", 292 + yticks=True" 293 + ),(%%) 294 +(% style="color:#000000" %) title="Response of (% style="color:#e74c3c" %)simple network(% style="color:#000000" %)", 295 + annotations="Simulated with NEST" 296 +).show() 297 + 298 +**Run script in terminal, show figure** 299 +))) 300 + 301 +(% class="wikigeneratedid" %) 302 +and there we have it, our simple neuronal network of integrate-and-fire neurons, written in PyNN, simulated with NEST. If you prefer to use the NEURON simulator, PyNN makes this very simple: we import the PyNN-for-NEURON module instead. 303 + 304 +(% class="box infomessage" %) 305 +((( 306 +**Screencast** - final state of editor 307 +\\(% style="color:#000000" %)"""Simple network model using PyNN""" 308 +\\import pyNN.(% style="color:#e74c3c" %)neuron(% style="color:#000000" %) as sim(%%) 309 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 310 +(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 311 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 312 +(% style="color:#000000" %)cell_type = sim.IF_curr_exp( 313 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), 314 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 315 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 316 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 317 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 318 +(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2") 319 +population2.set(i_offset=0) 320 +population1.record("v") 321 +population2.record("v")(%%) 322 +(% style="color:#000000" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5) 323 +synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 324 +connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 325 +(% style="color:#000000" %)sim.run(100.0)(%%) 326 +(% style="color:#000000" %)data1_v = population1.get_data().segments[0].filter(name='v')[0] 327 +data2_v = population2.get_data().segments[0].filter(name='v')[0] 328 +Figure( 329 + Panel( 330 + data1_v[:, 0:5], 331 + xticks=True, 332 + yticks=True, ylabel="Membrane potential (mV)" 333 + ), 334 + Panel( 335 + data2_v[:, 0:5], 336 + xticks=True, xlabel="Time (ms)", 337 + yticks=True" 338 + ),(%%) 339 +(% style="color:#000000" %) title="Response of simple network", 340 + annotations="Simulated with (% style="color:#e74c3c" %)NEURON(% style="color:#000000" %)" 341 +).show() 342 + 343 +**Run script in terminal, show figure** 344 +))) 345 + 346 +(% class="wikigeneratedid" %) 347 +As you would hope, NEST and NEURON give essentially identical results. 348 + 349 +(% class="box successmessage" %) 350 +((( 351 +**Slide** recap of learning objectives 352 +))) 353 + 354 +That is the end of this tutorial, in which I've demonstrated how to build a simple network using PyNN and to simulate it using two different simulators, NEST and NEURON. 355 + 356 +Of course, PyNN allows you to create much more complex networks than this, with more realistic neuron models, synaptic plasticity, spatial structure, and so on. You can also use other simulators, such as Brian or SpiNNaker, and you can run simulations in parallel on clusters or supercomputers. 357 + 358 +We will be releasing a series of tutorials, throughout the rest of 2021 and 2022, to introduce these more advanced features of PyNN, so keep an eye on the EBRAINS website. 359 + 360 +(% class="box successmessage" %) 361 +((( 362 +**Slide** acknowledgements, contact information 363 +))) 364 + 365 +(% class="wikigeneratedid" %) 366 +PyNN has been developed by many different people, with financial support from several organisations. I'd like to mention in particular the CNRS and the European Commission, through the FACETS, BrainScaleS, and Human Brain Project grants. 367 + 368 +(% class="wikigeneratedid" %) 369 +For more information, visit neuralensemble.org/PyNN. If you have questions you can contact us through the PyNN Github project, the NeuralEnsemble forum, EBRAINS support, or the EBRAINS Community.