Warning:  Due to planned infrastructure maintenance, the EBRAINS Wiki and EBRAINS Support system will be unavailable for up to three days starting Monday, 14 July. During this period, both services will be inaccessible, and any emails sent to the support address will not be received.

Attention: We are currently experiencing some issues with the EBRAINS Drive. Please bear with us as we fix this issue. We apologise for any inconvenience caused.


Last modified by adavison on 2022/10/04 13:55

From version 11.1
edited by adavison
on 2021/08/04 17:47
Change comment: There is no comment for this version
To version 11.3
edited by adavison
on 2021/09/30 14:01
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -164,7 +164,7 @@
164 164  \\**Run script in terminal, show figure**
165 165  )))
166 166  
167 -Let's change that. In nature every neuron is a little bit different, so let's set the resting membrane potential and the spike threshold randomly from a Gaussian distribution, and let's plot membrane voltage from _all_ the  neurons.
167 +Let's change that. In nature every neuron is a little bit different, so let's set the resting membrane potential and the spike threshold randomly from a Gaussian distribution.
168 168  
169 169  (% class="box infomessage" %)
170 170  (((
... ... @@ -197,8 +197,44 @@
197 197  
198 198  Now if we run our simulation again, we can see the effect of this heterogeneity in the neuron population.
199 199  
200 -TO BE COMPLETED
200 +(% class="box successmessage" %)
201 +(((
202 +**Slide** showing addition of second population, and of connections between them
203 +)))
201 201  
205 +(% class="wikigeneratedid" %)
206 +So far we have a population of neurons, but there are no connections between them, we don't have a network. Let's add a second population of the same size as the first, but we'll set the offset current to zero, so they don't fire action potentials spontaneously.
207 +
208 +(% class="box infomessage" %)
209 +(((
210 +**Screencast** - current state of editor
211 +\\(% style="color:#000000" %)"""Simple network model using PyNN"""
212 +\\import pyNN.nest as sim(%%)
213 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
214 +(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%)
215 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
216 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
217 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}),
218 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
219 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
220 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
221 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
222 +(% style="color:#000000" %)population1.record("v")
223 +sim.run(100.0)(%%)
224 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
225 +Figure(
226 + Panel(
227 + data_v[:, 0:5],
228 + xticks=True, xlabel="Time (ms)",
229 + yticks=True, ylabel="Membrane potential (mV)"
230 + ),
231 + title="Response of first five neurons with heterogeneous parameters",
232 + annotations="Simulated with NEST"
233 +).show()(%%)
234 +\\**Run script in terminal, show figure**
235 +)))
236 +
237 +
202 202  (% class="wikigeneratedid" id="HSummary28Inthistutorial2CyouhavelearnedtodoX202629" %)
203 203  (% class="small" %)**Summary (In this tutorial, you have learned to do X…)**
204 204