Attention: Due to an upgrade beginning on Friday, the 22nd August 2025, any new collabs, groups and any changes to teams will not be kept beyond the weekend. User creation will also be disabled during this time. The actual upgrade will take place on Wednesday, 27th August. On that day, any service requiring a Keycloak login will be unavailable for the duration of the upgrade. Thank you for your understanding as we complete this important work.


Last modified by adavison on 2022/10/04 13:55

From version 11.2
edited by adavison
on 2021/09/30 13:51
Change comment: There is no comment for this version
To version 11.3
edited by adavison
on 2021/09/30 14:01
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -197,8 +197,44 @@
197 197  
198 198  Now if we run our simulation again, we can see the effect of this heterogeneity in the neuron population.
199 199  
200 -TO BE COMPLETED
200 +(% class="box successmessage" %)
201 +(((
202 +**Slide** showing addition of second population, and of connections between them
203 +)))
201 201  
205 +(% class="wikigeneratedid" %)
206 +So far we have a population of neurons, but there are no connections between them, we don't have a network. Let's add a second population of the same size as the first, but we'll set the offset current to zero, so they don't fire action potentials spontaneously.
207 +
208 +(% class="box infomessage" %)
209 +(((
210 +**Screencast** - current state of editor
211 +\\(% style="color:#000000" %)"""Simple network model using PyNN"""
212 +\\import pyNN.nest as sim(%%)
213 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
214 +(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%)
215 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
216 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
217 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}),
218 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
219 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
220 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
221 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
222 +(% style="color:#000000" %)population1.record("v")
223 +sim.run(100.0)(%%)
224 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
225 +Figure(
226 + Panel(
227 + data_v[:, 0:5],
228 + xticks=True, xlabel="Time (ms)",
229 + yticks=True, ylabel="Membrane potential (mV)"
230 + ),
231 + title="Response of first five neurons with heterogeneous parameters",
232 + annotations="Simulated with NEST"
233 +).show()(%%)
234 +\\**Run script in terminal, show figure**
235 +)))
236 +
237 +
202 202  (% class="wikigeneratedid" id="HSummary28Inthistutorial2CyouhavelearnedtodoX202629" %)
203 203  (% class="small" %)**Summary (In this tutorial, you have learned to do X…)**
204 204