Attention: Data Proxy will be migrated from SWIFT to S3 storage at Friday, the 9th of May 2025 starting from 9pm CEST (my timezone). For more details, please join the rocket chat channel https://chat.ebrains.eu/channel/data-proxy-user-group


Last modified by adavison on 2022/10/04 13:55

From version 11.2
edited by adavison
on 2021/09/30 13:51
Change comment: There is no comment for this version
To version 16.1
edited by annedevismes
on 2021/10/18 10:26
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.adavison
1 +XWiki.annedevismes
Content
... ... @@ -9,11 +9,11 @@
9 9  
10 10  == Audience ==
11 11  
12 -This tutorial is intended for people with at least a basic knowledge of neuroscience (high school level or above) and basic familiarity with the Python programming language. It should also be helpful for people who already have advanced knowledge of neuroscience and neural simulation, who simply wish to learn how to use PyNN, and how it differs from other simulation tools they know.
12 +This tutorial is intended for people with at least a basic knowledge of neuroscience (high-school level or above) and basic familiarity with the Python programming language. It should also be helpful for people who already have advanced knowledge of neuroscience and neural simulation, who simply wish to learn how to use PyNN and how it differs from other simulation tools they know.
13 13  
14 14  == Prerequisites ==
15 15  
16 -To follow this tutorial, you need a basic knowledge of neuroscience (high-school level or greater), basic familiarity with the Python programming language, and either a computer with PyNN, NEST, NEURON and Brian 2 installed, or an EBRAINS account and basic familiarity with Jupyter notebooks. If you don't have these tools installed, see one of our previous tutorials which guide you through the installation.
16 +To follow this tutorial, you need a basic knowledge of neuroscience (high-school level or greater), basic familiarity with the Python programming language, and either a computer with PyNN, NEST, NEURON, and Brian 2 installed or an EBRAINS account and basic familiarity with Jupyter notebooks. If you don't have these tools installed, see one of our previous tutorials which guide you through the installation.
17 17  
18 18  == Format ==
19 19  
... ... @@ -66,13 +66,13 @@
66 66  **Screencast** - blank document in editor
67 67  )))
68 68  
69 -In this video, you'll see my editor on the left, and on the right my terminal and my file browser. I'll be writing code in the editor, and then running my scripts in the terminal. You're welcome to follow along~-~--you can pause the video at any time if I'm going too fast~-~--or you can just watch.
69 +In this video, you'll see my editor on the left and my terminal and my file browser on the right. I'll be writing code in the editor and then running my scripts in the terminal. You're welcome to follow along~-~--you can pause the video at any time if I'm going too fast~-~--or you can just watch.
70 70  
71 -Let's start by writing a docstring, "Simple network model using PyNN".
71 +Let's start by writing a docstring "Simple network model using PyNN".
72 72  
73 -For now, we're going to use the NEST simulator to simulate this model, so we import the PyNN-for-NEST module.
73 +For now, we're going to use the NEST simulator to simulate this model; so, we import the PyNN-for-NEST module.
74 74  
75 -Like with any numerical model, we need to break time down into small steps, so let's set that up with steps of 0.1 milliseconds.
75 +Like with any numerical model, we need to break time down into small steps; so let's set that up with steps of 0.1 milliseconds.
76 76  
77 77  (% class="box infomessage" %)
78 78  (((
... ... @@ -95,7 +95,7 @@
95 95  (% style="color:#e74c3c" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)
96 96  )))
97 97  
98 -Let's create 100 of these neurons, then we're going to record the membrane voltage, and run a simulation for 100 milliseconds.
98 +Let's create 100 of these neurons; then, we're going to record the membrane voltage and run a simulation for 100 milliseconds.
99 99  
100 100  (% class="box infomessage" %)
101 101  (((
... ... @@ -136,23 +136,17 @@
136 136  \\**Run script in terminal, show figure**
137 137  )))
138 138  
139 -As you'd expect, the bias current causes the membrane voltage to increase until it reaches threshold~-~--it doesn't increase in a straight line because it's a //leaky// integrate-and-fire neuron~-~--then once it hits the threshold the voltage is reset, and then stays at the same level for a short time~-~--this is the refractory period~-~--before it starts to increase again.
139 +As you'd expect, the bias current causes the membrane voltage to increase until it reaches threshold~-~--it doesn't increase in a straight line because it's a //leaky// integrate-and-fire neuron~-~--then, once it hits the threshold, the voltage is reset and then stays at the same level for a short time~-~--this is the refractory period~-~--before it starts to increase again.
140 140  
141 -Now, all 100 neurons in our population are identical, so if we plotted the first neuron, the second neuron, ..., we'd get the same trace.
141 +Now, all 100 neurons in our population are identical; so, if we plotted the first neuron, the second neuron, ..., we'd get the same trace.
142 142  
143 143  (% class="box infomessage" %)
144 144  (((
145 -**Screencast** - current state of editor
146 -\\(% style="color:#000000" %)"""Simple network model using PyNN"""
147 -\\import pyNN.nest as sim(%%)
148 -(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
149 -(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
150 -(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
151 -(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")
152 -population1.record("v")
153 -sim.run(100.0)(%%)
154 -(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
155 -Figure(
145 +**Screencast** - changes in editor
146 +
147 +
148 +**...**
149 +(% style="color:#000000" %)Figure(
156 156   Panel(
157 157   data_v[:, (% style="color:#e74c3c" %)0:5(% style="color:#000000" %)],
158 158   xticks=True, xlabel="Time (ms)",
... ... @@ -164,11 +164,11 @@
164 164  \\**Run script in terminal, show figure**
165 165  )))
166 166  
167 -Let's change that. In nature every neuron is a little bit different, so let's set the resting membrane potential and the spike threshold randomly from a Gaussian distribution.
161 +Let's change that. In nature, every neuron is a little bit different; so, let's set the resting membrane potential and the spike threshold randomly from a Gaussian distribution.
168 168  
169 169  (% class="box infomessage" %)
170 170  (((
171 -**Screencast** - current state of editor
165 +**Screencast** - changes in editor
172 172  \\(% style="color:#000000" %)"""Simple network model using PyNN"""
173 173  \\import pyNN.nest as sim(%%)
174 174  (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
... ... @@ -179,11 +179,12 @@
179 179   v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
180 180   v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
181 181  (% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
182 -(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")
183 -population1.record("v")
184 -sim.run(100.0)(%%)
185 -(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
186 -Figure(
176 +
177 +
178 +**...**
179 +
180 +
181 +(% style="color:#000000" %)Figure(
187 187   Panel(
188 188   data_v[:, 0:5],
189 189   xticks=True, xlabel="Time (ms)",
... ... @@ -195,26 +195,180 @@
195 195  \\**Run script in terminal, show figure**
196 196  )))
197 197  
198 -Now if we run our simulation again, we can see the effect of this heterogeneity in the neuron population.
193 +Now, if we run our simulation again, we can see the effect of this heterogeneity in the neuron population.
199 199  
200 -TO BE COMPLETED
195 +(% class="box successmessage" %)
196 +(((
197 +**Slide** showing addition of second population and of connections between them
198 +)))
201 201  
202 -(% class="wikigeneratedid" id="HSummary28Inthistutorial2CyouhavelearnedtodoX202629" %)
203 -(% class="small" %)**Summary (In this tutorial, you have learned to do X…)**
200 +(% class="wikigeneratedid" %)
201 +So far, we have a population of neurons, but there are no connections between them, we don't have a network. Let's add a second population of the same size as the first, but we'll set the offset current to zero, so they don't fire action potentials spontaneously.
204 204  
205 -.
203 +(% class="box infomessage" %)
204 +(((
205 +**Screencast** - changes in editor
206 +\\**...**
207 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
208 +(% style="color:#e74c3c" %)population2 = sim.Population(100, cell_type, label="Population 2")
209 +population2.set(i_offset=0)(%%)
210 +(% style="color:#000000" %)population1.record("v")(%%)
211 +(% style="color:#e74c3c" %)population2.record("v")(%%)
212 +(% style="color:#000000" %)sim.run(100.0)(%%)
213 +**...**
214 +)))
206 206  
207 -(% class="wikigeneratedid" id="HAcknowledgementsifappropriate" %)
208 -(% class="small" %)**Acknowledgements if appropriate**
216 +Now, we want to create synaptic connections between the neurons in Population 1 and those in Population 2. There are lots of different ways these could be connected.
209 209  
210 -.
218 +(% class="box successmessage" %)
219 +(((
220 +**Slide** showing all-to-all connections
221 +)))
211 211  
212 -(% class="wikigeneratedid" id="HReferencestowebsites28Formoreinformation2Cvisitusat202629" %)
213 -(% class="small" %)**References to websites (For more information, visit us at…)**
223 +We could connect all neurons in Population 1 to all those in Population 2.
214 214  
215 -.
225 +(% class="box successmessage" %)
226 +(((
227 +**Slide** showing random connections
228 +)))
216 216  
217 -(% class="wikigeneratedid" id="HContactinformation28Forquestions2Ccontactusat202629" %)
218 -(% class="small" %)**Contact information (For questions, contact us at…)**
230 +We could connect the populations randomly, in several different ways.
219 219  
220 -.
232 +(% class="box successmessage" %)
233 +(((
234 +**Slide** showing distance-dependent connections
235 +)))
236 +
237 +(% class="wikigeneratedid" %)
238 +We could connect the populations randomly, but with a probability of connection that depends on the distance between the neurons.
239 +
240 +(% class="box successmessage" %)
241 +(((
242 +**Slide** showing explicit lists of connections
243 +)))
244 +
245 +(% class="wikigeneratedid" %)
246 +Or we could connect the neurons in a very specific manner, based on an explicit list of connections.
247 +
248 +(% class="wikigeneratedid" %)
249 +Just as PyNN provides a variety of neuron models, so it comes with a range of connection algorithms built in. You can also add your own connection methods.
250 +
251 +(% class="box successmessage" %)
252 +(((
253 +**Slide** showing addition of second population, and of connections between them, labelled as a Projection.
254 +)))
255 +
256 +(% class="wikigeneratedid" %)
257 +In PyNN, we call a group of connections between two populations a _Projection_. To create a Projection, we need to specify the presynaptic population, the postsynaptic population, the connection algorithm, and the synapse model. Here, we're using the simplest synapse model available in PyNN, for which the synaptic weight is constant over time; there is no plasticity.
258 +
259 +(% class="box infomessage" %)
260 +(((
261 +**Screencast** - changes in editor
262 +
263 +
264 +**...**
265 +(% style="color:#000000" %)population2.record("v")(%%)
266 +(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5)
267 +synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5)
268 +connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%)
269 +(% style="color:#000000" %)sim.run(100.0)(%%)
270 +**...**
271 +)))
272 +
273 +(% class="wikigeneratedid" %)
274 +Finally, let's update our figure, by adding a second panel to show the responses of Population 2.
275 +
276 +(% class="box infomessage" %)
277 +(((
278 +**Screencast** - changes in editor
279 +\\**...**
280 +(% style="color:#000000" %)sim.run(100.0)(%%)
281 +(% style="color:#e74c3c" %)data1_v(% style="color:#000000" %) = population1.get_data().segments[0].filter(name='v')[0](%%)
282 +(% style="color:#e74c3c" %)data2_v = population2.get_data().segments[0].filter(name='v')[0](%%)
283 +(% style="color:#000000" %)Figure(
284 + Panel(
285 + (% style="color:#e74c3c" %)data1_v(% style="color:#000000" %)[:, 0:5],
286 + xticks=True, (% style="color:#e74c3c" %)--xlabel="Time (ms)",--(%%)
287 +(% style="color:#000000" %) yticks=True, ylabel="Membrane potential (mV)"
288 + ),
289 + (% style="color:#e74c3c" %)Panel(
290 + data2_v[:, 0:5],
291 + xticks=True, xlabel="Time (ms)",
292 + yticks=True"
293 + ),(%%)
294 +(% style="color:#000000" %) title="Response of (% style="color:#e74c3c" %)simple network(% style="color:#000000" %)",
295 + annotations="Simulated with NEST"
296 +).show()
297 +
298 +**Run script in terminal, show figure**
299 +)))
300 +
301 +(% class="wikigeneratedid" %)
302 +and there we have it, our simple neuronal network of integrate-and-fire neurons, written in PyNN, simulated with NEST. If you prefer to use the NEURON simulator, PyNN makes this very simple: we import the PyNN-for-NEURON module instead.
303 +
304 +(% class="box infomessage" %)
305 +(((
306 +**Screencast** - final state of editor
307 +\\(% style="color:#000000" %)"""Simple network model using PyNN"""
308 +\\import pyNN.(% style="color:#e74c3c" %)neuron(% style="color:#000000" %) as sim(%%)
309 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
310 +(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%)
311 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
312 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
313 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}),
314 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
315 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
316 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
317 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
318 +(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2")
319 +population2.set(i_offset=0)
320 +population1.record("v")
321 +population2.record("v")(%%)
322 +(% style="color:#000000" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5)
323 +synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5)
324 +connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%)
325 +(% style="color:#000000" %)sim.run(100.0)(%%)
326 +(% style="color:#000000" %)data1_v = population1.get_data().segments[0].filter(name='v')[0]
327 +data2_v = population2.get_data().segments[0].filter(name='v')[0]
328 +Figure(
329 + Panel(
330 + data1_v[:, 0:5],
331 + xticks=True,
332 + yticks=True, ylabel="Membrane potential (mV)"
333 + ),
334 + Panel(
335 + data2_v[:, 0:5],
336 + xticks=True, xlabel="Time (ms)",
337 + yticks=True"
338 + ),(%%)
339 +(% style="color:#000000" %) title="Response of simple network",
340 + annotations="Simulated with (% style="color:#e74c3c" %)NEURON(% style="color:#000000" %)"
341 +).show()
342 +
343 +**Run script in terminal, show figure**
344 +)))
345 +
346 +(% class="wikigeneratedid" %)
347 +As you would hope, NEST and NEURON give essentially identical results.
348 +
349 +(% class="box successmessage" %)
350 +(((
351 +**Slide** recap of learning objectives
352 +)))
353 +
354 +That is the end of this tutorial, in which I've demonstrated how to build a simple network using PyNN and to simulate it using two different simulators, NEST and NEURON.
355 +
356 +Of course, PyNN allows you to create much more complex networks than this, with more realistic neuron models, synaptic plasticity, spatial structure, and so on. You can also use other simulators, such as Brian or SpiNNaker, and you can run simulations in parallel on clusters or supercomputers.
357 +
358 +We will be releasing a series of tutorials, throughout the rest of 2021 and 2022, to introduce these more advanced features of PyNN, so keep an eye on the EBRAINS website.
359 +
360 +(% class="box successmessage" %)
361 +(((
362 +**Slide** acknowledgements, contact information
363 +)))
364 +
365 +(% class="wikigeneratedid" %)
366 +PyNN has been developed by many different people, with financial support from several organisations. I'd like to mention in particular the CNRS and the European Commission, through the FACETS, BrainScaleS, and Human Brain Project grants.
367 +
368 +(% class="wikigeneratedid" %)
369 +For more information, visit neuralensemble.org/PyNN. If you have questions you can contact us through the PyNN Github project, the NeuralEnsemble forum, EBRAINS support, or the EBRAINS Community.