Changes for page 03. Building and simulating a simple model
Last modified by adavison on 2022/10/04 13:55
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -164,7 +164,7 @@ 164 164 \\**Run script in terminal, show figure** 165 165 ))) 166 166 167 -Let's change that. In nature every neuron is a little bit different, so let's set the resting membrane potential and the spike threshold randomly from a Gaussian distribution. 167 +Let's change that. In nature every neuron is a little bit different, so let's set the resting membrane potential and the spike threshold randomly from a Gaussian distribution, and let's plot membrane voltage from _all_ the neurons. 168 168 169 169 (% class="box infomessage" %) 170 170 ((( ... ... @@ -197,44 +197,8 @@ 197 197 198 198 Now if we run our simulation again, we can see the effect of this heterogeneity in the neuron population. 199 199 200 -(% class="box successmessage" %) 201 -((( 202 -**Slide** showing addition of second population, and of connections between them 203 -))) 200 +TO BE COMPLETED 204 204 205 -(% class="wikigeneratedid" %) 206 -So far we have a population of neurons, but there are no connections between them, we don't have a network. Let's add a second population of the same size as the first, but we'll set the offset current to zero, so they don't fire action potentials spontaneously. 207 - 208 -(% class="box infomessage" %) 209 -((( 210 -**Screencast** - current state of editor 211 -\\(% style="color:#000000" %)"""Simple network model using PyNN""" 212 -\\import pyNN.nest as sim(%%) 213 -(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 214 -(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 215 -(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 216 -(% style="color:#000000" %)cell_type = sim.IF_curr_exp( 217 - (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), 218 - v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 219 - v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 220 -(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 221 -(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 222 -(% style="color:#000000" %)population1.record("v") 223 -sim.run(100.0)(%%) 224 -(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 225 -Figure( 226 - Panel( 227 - data_v[:, 0:5], 228 - xticks=True, xlabel="Time (ms)", 229 - yticks=True, ylabel="Membrane potential (mV)" 230 - ), 231 - title="Response of first five neurons with heterogeneous parameters", 232 - annotations="Simulated with NEST" 233 -).show()(%%) 234 -\\**Run script in terminal, show figure** 235 -))) 236 - 237 - 238 238 (% class="wikigeneratedid" id="HSummary28Inthistutorial2CyouhavelearnedtodoX202629" %) 239 239 (% class="small" %)**Summary (In this tutorial, you have learned to do X…)** 240 240