Last modified by adavison on 2022/10/04 13:55

From version 11.3
edited by adavison
on 2021/09/30 14:01
Change comment: There is no comment for this version
To version 11.1
edited by adavison
on 2021/08/04 17:47
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -164,7 +164,7 @@
164 164  \\**Run script in terminal, show figure**
165 165  )))
166 166  
167 -Let's change that. In nature every neuron is a little bit different, so let's set the resting membrane potential and the spike threshold randomly from a Gaussian distribution.
167 +Let's change that. In nature every neuron is a little bit different, so let's set the resting membrane potential and the spike threshold randomly from a Gaussian distribution, and let's plot membrane voltage from _all_ the  neurons.
168 168  
169 169  (% class="box infomessage" %)
170 170  (((
... ... @@ -197,44 +197,8 @@
197 197  
198 198  Now if we run our simulation again, we can see the effect of this heterogeneity in the neuron population.
199 199  
200 -(% class="box successmessage" %)
201 -(((
202 -**Slide** showing addition of second population, and of connections between them
203 -)))
200 +TO BE COMPLETED
204 204  
205 -(% class="wikigeneratedid" %)
206 -So far we have a population of neurons, but there are no connections between them, we don't have a network. Let's add a second population of the same size as the first, but we'll set the offset current to zero, so they don't fire action potentials spontaneously.
207 -
208 -(% class="box infomessage" %)
209 -(((
210 -**Screencast** - current state of editor
211 -\\(% style="color:#000000" %)"""Simple network model using PyNN"""
212 -\\import pyNN.nest as sim(%%)
213 -(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
214 -(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%)
215 -(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
216 -(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
217 - (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}),
218 - v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
219 - v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
220 -(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
221 -(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
222 -(% style="color:#000000" %)population1.record("v")
223 -sim.run(100.0)(%%)
224 -(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
225 -Figure(
226 - Panel(
227 - data_v[:, 0:5],
228 - xticks=True, xlabel="Time (ms)",
229 - yticks=True, ylabel="Membrane potential (mV)"
230 - ),
231 - title="Response of first five neurons with heterogeneous parameters",
232 - annotations="Simulated with NEST"
233 -).show()(%%)
234 -\\**Run script in terminal, show figure**
235 -)))
236 -
237 -
238 238  (% class="wikigeneratedid" id="HSummary28Inthistutorial2CyouhavelearnedtodoX202629" %)
239 239  (% class="small" %)**Summary (In this tutorial, you have learned to do X…)**
240 240