Changes for page 03. Building and simulating a simple model
Last modified by adavison on 2022/10/04 13:55
From version 11.3
edited by adavison
on 2021/09/30 14:01
on 2021/09/30 14:01
Change comment:
There is no comment for this version
To version 16.1
edited by annedevismes
on 2021/10/18 10:26
on 2021/10/18 10:26
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki.ad avison1 +XWiki.annedevismes - Content
-
... ... @@ -9,11 +9,11 @@ 9 9 10 10 == Audience == 11 11 12 -This tutorial is intended for people with at least a basic knowledge of neuroscience (high ,and how it differs from other simulation tools they know.12 +This tutorial is intended for people with at least a basic knowledge of neuroscience (high-school level or above) and basic familiarity with the Python programming language. It should also be helpful for people who already have advanced knowledge of neuroscience and neural simulation, who simply wish to learn how to use PyNN and how it differs from other simulation tools they know. 13 13 14 14 == Prerequisites == 15 15 16 -To follow this tutorial, you need a basic knowledge of neuroscience (high-school level or greater), basic familiarity with the Python programming language, and either a computer with PyNN, NEST, NEURON and Brian 2 installed ,or an EBRAINS account and basic familiarity with Jupyter notebooks. If you don't have these tools installed, see one of our previous tutorials which guide you through the installation.16 +To follow this tutorial, you need a basic knowledge of neuroscience (high-school level or greater), basic familiarity with the Python programming language, and either a computer with PyNN, NEST, NEURON, and Brian 2 installed or an EBRAINS account and basic familiarity with Jupyter notebooks. If you don't have these tools installed, see one of our previous tutorials which guide you through the installation. 17 17 18 18 == Format == 19 19 ... ... @@ -66,13 +66,13 @@ 66 66 **Screencast** - blank document in editor 67 67 ))) 68 68 69 -In this video, you'll see my editor on the left ,andon the rightmy terminal and my file browser. I'll be writing code in the editor,and then running my scripts in the terminal. You're welcome to follow along~-~--you can pause the video at any time if I'm going too fast~-~--or you can just watch.69 +In this video, you'll see my editor on the left and my terminal and my file browser on the right. I'll be writing code in the editor and then running my scripts in the terminal. You're welcome to follow along~-~--you can pause the video at any time if I'm going too fast~-~--or you can just watch. 70 70 71 -Let's start by writing a docstring ,"Simple network model using PyNN".71 +Let's start by writing a docstring "Simple network model using PyNN". 72 72 73 -For now, we're going to use the NEST simulator to simulate this model ,so we import the PyNN-for-NEST module.73 +For now, we're going to use the NEST simulator to simulate this model; so, we import the PyNN-for-NEST module. 74 74 75 -Like with any numerical model, we need to break time down into small steps ,so let's set that up with steps of 0.1 milliseconds.75 +Like with any numerical model, we need to break time down into small steps; so let's set that up with steps of 0.1 milliseconds. 76 76 77 77 (% class="box infomessage" %) 78 78 ((( ... ... @@ -95,7 +95,7 @@ 95 95 (% style="color:#e74c3c" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1) 96 96 ))) 97 97 98 -Let's create 100 of these neurons ,then we're going to record the membrane voltage,and run a simulation for 100 milliseconds.98 +Let's create 100 of these neurons; then, we're going to record the membrane voltage and run a simulation for 100 milliseconds. 99 99 100 100 (% class="box infomessage" %) 101 101 ((( ... ... @@ -136,23 +136,17 @@ 136 136 \\**Run script in terminal, show figure** 137 137 ))) 138 138 139 -As you'd expect, the bias current causes the membrane voltage to increase until it reaches threshold~-~--it doesn't increase in a straight line because it's a //leaky// integrate-and-fire neuron~-~--then once it hits the threshold the voltage is reset ,and then stays at the same level for a short time~-~--this is the refractory period~-~--before it starts to increase again.139 +As you'd expect, the bias current causes the membrane voltage to increase until it reaches threshold~-~--it doesn't increase in a straight line because it's a //leaky// integrate-and-fire neuron~-~--then, once it hits the threshold, the voltage is reset and then stays at the same level for a short time~-~--this is the refractory period~-~--before it starts to increase again. 140 140 141 -Now, all 100 neurons in our population are identical ,so if we plotted the first neuron, the second neuron, ..., we'd get the same trace.141 +Now, all 100 neurons in our population are identical; so, if we plotted the first neuron, the second neuron, ..., we'd get the same trace. 142 142 143 143 (% class="box infomessage" %) 144 144 ((( 145 -**Screencast** - current state of editor 146 -\\(% style="color:#000000" %)"""Simple network model using PyNN""" 147 -\\import pyNN.nest as sim(%%) 148 -(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 149 -(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 150 -(% style="color:#000000" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 151 -(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1") 152 -population1.record("v") 153 -sim.run(100.0)(%%) 154 -(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 155 -Figure( 145 +**Screencast** - changes in editor 146 + 147 + 148 +**...** 149 +(% style="color:#000000" %)Figure( 156 156 Panel( 157 157 data_v[:, (% style="color:#e74c3c" %)0:5(% style="color:#000000" %)], 158 158 xticks=True, xlabel="Time (ms)", ... ... @@ -164,11 +164,11 @@ 164 164 \\**Run script in terminal, show figure** 165 165 ))) 166 166 167 -Let's change that. In nature every neuron is a little bit different ,so let's set the resting membrane potential and the spike threshold randomly from a Gaussian distribution.161 +Let's change that. In nature, every neuron is a little bit different; so, let's set the resting membrane potential and the spike threshold randomly from a Gaussian distribution. 168 168 169 169 (% class="box infomessage" %) 170 170 ((( 171 -**Screencast** - c urrent stateofeditor165 +**Screencast** - changes in editor 172 172 \\(% style="color:#000000" %)"""Simple network model using PyNN""" 173 173 \\import pyNN.nest as sim(%%) 174 174 (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) ... ... @@ -179,11 +179,12 @@ 179 179 v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 180 180 v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 181 181 (% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 182 -(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1") 183 -population1.record("v") 184 -sim.run(100.0)(%%) 185 -(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 186 -Figure( 176 + 177 + 178 +**...** 179 + 180 + 181 +(% style="color:#000000" %)Figure( 187 187 Panel( 188 188 data_v[:, 0:5], 189 189 xticks=True, xlabel="Time (ms)", ... ... @@ -195,21 +195,122 @@ 195 195 \\**Run script in terminal, show figure** 196 196 ))) 197 197 198 -Now if we run our simulation again, we can see the effect of this heterogeneity in the neuron population. 193 +Now, if we run our simulation again, we can see the effect of this heterogeneity in the neuron population. 199 199 200 200 (% class="box successmessage" %) 201 201 ((( 202 -**Slide** showing addition of second population ,and of connections between them197 +**Slide** showing addition of second population and of connections between them 203 203 ))) 204 204 205 205 (% class="wikigeneratedid" %) 206 -So far we have a population of neurons, but there are no connections between them, we don't have a network. Let's add a second population of the same size as the first, but we'll set the offset current to zero, so they don't fire action potentials spontaneously. 201 +So far, we have a population of neurons, but there are no connections between them, we don't have a network. Let's add a second population of the same size as the first, but we'll set the offset current to zero, so they don't fire action potentials spontaneously. 207 207 208 208 (% class="box infomessage" %) 209 209 ((( 210 -**Screencast** - current state of editor 205 +**Screencast** - changes in editor 206 +\\**...** 207 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 208 +(% style="color:#e74c3c" %)population2 = sim.Population(100, cell_type, label="Population 2") 209 +population2.set(i_offset=0)(%%) 210 +(% style="color:#000000" %)population1.record("v")(%%) 211 +(% style="color:#e74c3c" %)population2.record("v")(%%) 212 +(% style="color:#000000" %)sim.run(100.0)(%%) 213 +**...** 214 +))) 215 + 216 +Now, we want to create synaptic connections between the neurons in Population 1 and those in Population 2. There are lots of different ways these could be connected. 217 + 218 +(% class="box successmessage" %) 219 +((( 220 +**Slide** showing all-to-all connections 221 +))) 222 + 223 +We could connect all neurons in Population 1 to all those in Population 2. 224 + 225 +(% class="box successmessage" %) 226 +((( 227 +**Slide** showing random connections 228 +))) 229 + 230 +We could connect the populations randomly, in several different ways. 231 + 232 +(% class="box successmessage" %) 233 +((( 234 +**Slide** showing distance-dependent connections 235 +))) 236 + 237 +(% class="wikigeneratedid" %) 238 +We could connect the populations randomly, but with a probability of connection that depends on the distance between the neurons. 239 + 240 +(% class="box successmessage" %) 241 +((( 242 +**Slide** showing explicit lists of connections 243 +))) 244 + 245 +(% class="wikigeneratedid" %) 246 +Or we could connect the neurons in a very specific manner, based on an explicit list of connections. 247 + 248 +(% class="wikigeneratedid" %) 249 +Just as PyNN provides a variety of neuron models, so it comes with a range of connection algorithms built in. You can also add your own connection methods. 250 + 251 +(% class="box successmessage" %) 252 +((( 253 +**Slide** showing addition of second population, and of connections between them, labelled as a Projection. 254 +))) 255 + 256 +(% class="wikigeneratedid" %) 257 +In PyNN, we call a group of connections between two populations a _Projection_. To create a Projection, we need to specify the presynaptic population, the postsynaptic population, the connection algorithm, and the synapse model. Here, we're using the simplest synapse model available in PyNN, for which the synaptic weight is constant over time; there is no plasticity. 258 + 259 +(% class="box infomessage" %) 260 +((( 261 +**Screencast** - changes in editor 262 + 263 + 264 +**...** 265 +(% style="color:#000000" %)population2.record("v")(%%) 266 +(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5) 267 +synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 268 +connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 269 +(% style="color:#000000" %)sim.run(100.0)(%%) 270 +**...** 271 +))) 272 + 273 +(% class="wikigeneratedid" %) 274 +Finally, let's update our figure, by adding a second panel to show the responses of Population 2. 275 + 276 +(% class="box infomessage" %) 277 +((( 278 +**Screencast** - changes in editor 279 +\\**...** 280 +(% style="color:#000000" %)sim.run(100.0)(%%) 281 +(% style="color:#e74c3c" %)data1_v(% style="color:#000000" %) = population1.get_data().segments[0].filter(name='v')[0](%%) 282 +(% style="color:#e74c3c" %)data2_v = population2.get_data().segments[0].filter(name='v')[0](%%) 283 +(% style="color:#000000" %)Figure( 284 + Panel( 285 + (% style="color:#e74c3c" %)data1_v(% style="color:#000000" %)[:, 0:5], 286 + xticks=True, (% style="color:#e74c3c" %)--xlabel="Time (ms)",--(%%) 287 +(% style="color:#000000" %) yticks=True, ylabel="Membrane potential (mV)" 288 + ), 289 + (% style="color:#e74c3c" %)Panel( 290 + data2_v[:, 0:5], 291 + xticks=True, xlabel="Time (ms)", 292 + yticks=True" 293 + ),(%%) 294 +(% style="color:#000000" %) title="Response of (% style="color:#e74c3c" %)simple network(% style="color:#000000" %)", 295 + annotations="Simulated with NEST" 296 +).show() 297 + 298 +**Run script in terminal, show figure** 299 +))) 300 + 301 +(% class="wikigeneratedid" %) 302 +and there we have it, our simple neuronal network of integrate-and-fire neurons, written in PyNN, simulated with NEST. If you prefer to use the NEURON simulator, PyNN makes this very simple: we import the PyNN-for-NEURON module instead. 303 + 304 +(% class="box infomessage" %) 305 +((( 306 +**Screencast** - final state of editor 211 211 \\(% style="color:#000000" %)"""Simple network model using PyNN""" 212 -\\import pyNN.nest as sim(%%) 308 +\\import pyNN.(% style="color:#e74c3c" %)neuron(% style="color:#000000" %) as sim(%%) 213 213 (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 214 214 (% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 215 215 (% style="color:#000000" %)sim.setup(timestep=0.1)(%%) ... ... @@ -219,38 +219,55 @@ 219 219 v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 220 220 (% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 221 221 (% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 222 -(% style="color:#000000" %)population1.record("v") 223 -sim.run(100.0)(%%) 224 -(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 318 +(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2") 319 +population2.set(i_offset=0) 320 +population1.record("v") 321 +population2.record("v")(%%) 322 +(% style="color:#000000" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5) 323 +synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 324 +connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 325 +(% style="color:#000000" %)sim.run(100.0)(%%) 326 +(% style="color:#000000" %)data1_v = population1.get_data().segments[0].filter(name='v')[0] 327 +data2_v = population2.get_data().segments[0].filter(name='v')[0] 225 225 Figure( 226 226 Panel( 227 - data_v[:, 0:5], 228 - xticks=True, xlabel="Time (ms)",330 + data1_v[:, 0:5], 331 + xticks=True, 229 229 yticks=True, ylabel="Membrane potential (mV)" 230 230 ), 231 - title="Response of first five neurons with heterogeneous parameters", 232 - annotations="Simulated with NEST" 233 -).show()(%%) 234 -\\**Run script in terminal, show figure** 334 + Panel( 335 + data2_v[:, 0:5], 336 + xticks=True, xlabel="Time (ms)", 337 + yticks=True" 338 + ),(%%) 339 +(% style="color:#000000" %) title="Response of simple network", 340 + annotations="Simulated with (% style="color:#e74c3c" %)NEURON(% style="color:#000000" %)" 341 +).show() 342 + 343 +**Run script in terminal, show figure** 235 235 ))) 236 236 346 +(% class="wikigeneratedid" %) 347 +As you would hope, NEST and NEURON give essentially identical results. 237 237 238 -(% class="wikigeneratedid" id="HSummary28Inthistutorial2CyouhavelearnedtodoX202629" %) 239 -(% class="small" %)**Summary (In this tutorial, you have learned to do X…)** 349 +(% class="box successmessage" %) 350 +((( 351 +**Slide** recap of learning objectives 352 +))) 240 240 241 -. 354 +That is the end of this tutorial, in which I've demonstrated how to build a simple network using PyNN and to simulate it using two different simulators, NEST and NEURON. 242 242 243 -(% class="wikigeneratedid" id="HAcknowledgementsifappropriate" %) 244 -(% class="small" %)**Acknowledgements if appropriate** 356 +Of course, PyNN allows you to create much more complex networks than this, with more realistic neuron models, synaptic plasticity, spatial structure, and so on. You can also use other simulators, such as Brian or SpiNNaker, and you can run simulations in parallel on clusters or supercomputers. 245 245 246 -. 358 +We will be releasing a series of tutorials, throughout the rest of 2021 and 2022, to introduce these more advanced features of PyNN, so keep an eye on the EBRAINS website. 247 247 248 -(% class="wikigeneratedid" id="HReferencestowebsites28Formoreinformation2Cvisitusat202629" %) 249 -(% class="small" %)**References to websites (For more information, visit us at…)** 360 +(% class="box successmessage" %) 361 +((( 362 +**Slide** acknowledgements, contact information 363 +))) 250 250 251 -. 365 +(% class="wikigeneratedid" %) 366 +PyNN has been developed by many different people, with financial support from several organisations. I'd like to mention in particular the CNRS and the European Commission, through the FACETS, BrainScaleS, and Human Brain Project grants. 252 252 253 -(% class="wikigeneratedid" id="HContactinformation28Forquestions2Ccontactusat202629" %) 254 -(% class="small" %)**Contact information (For questions, contact us at…)** 255 - 256 -. 368 +(% class="wikigeneratedid" %) 369 +For more information, visit neuralensemble.org/PyNN. If you have questions you can contact us through the PyNN Github project, the NeuralEnsemble forum, EBRAINS support, or the EBRAINS Community.