Changes for page 03. Building and simulating a simple model
Last modified by adavison on 2022/10/04 13:55
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -233,8 +233,7 @@ 233 233 ), 234 234 title="Response of first five neurons with heterogeneous parameters", 235 235 annotations="Simulated with NEST" 236 -).show()(%%) 237 -\\**Run script in terminal, show figure** 236 +).show() 238 238 ))) 239 239 240 240 Now we want to create synaptic connections between the neurons in Population 1 and those in Population 2. There are lots of different ways these could be connected. ... ... @@ -311,10 +311,48 @@ 311 311 ), 312 312 title="Response of first five neurons with heterogeneous parameters", 313 313 annotations="Simulated with NEST" 314 -).show()(%%) 315 -\\**Run script in terminal, show figure** 313 +).show() 316 316 ))) 317 317 316 +(% class="wikigeneratedid" %) 317 +Finally, let's update our figure, by adding a second panel to show the responses of Population 2. 318 + 319 +(% class="box infomessage" %) 320 +((( 321 +**Screencast** - current state of editor 322 +\\(% style="color:#000000" %)"""Simple network model using PyNN""" 323 +\\import pyNN.nest as sim(%%) 324 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 325 +(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 326 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 327 +(% style="color:#000000" %)cell_type = sim.IF_curr_exp( 328 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), 329 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 330 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 331 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 332 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 333 +(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2") 334 +population2.set(i_offset=0) 335 +population1.record("v") 336 +population2.record("v")(%%) 337 +(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5) 338 +synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 339 +connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 340 +(% style="color:#000000" %)sim.run(100.0)(%%) 341 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 342 +Figure( 343 + Panel( 344 + data_v[:, 0:5], 345 + xticks=True, xlabel="Time (ms)", 346 + yticks=True, ylabel="Membrane potential (mV)" 347 + ), 348 + title="Response of first five neurons with heterogeneous parameters", 349 + annotations="Simulated with NEST" 350 +).show() 351 + 352 +Run script in terminal, show figure 353 +))) 354 + 318 318 (% class="wikigeneratedid" id="HSummary28Inthistutorial2CyouhavelearnedtodoX202629" %) 319 319 (% class="small" %)**Summary (In this tutorial, you have learned to do X…)** 320 320