Warning:  Due to planned infrastructure maintenance, the EBRAINS Wiki and EBRAINS Support system will be unavailable for up to three days starting Monday, 14 July. During this period, both services will be inaccessible, and any emails sent to the support address will not be received.

Attention: We are currently experiencing some issues with the EBRAINS Drive. Please bear with us as we fix this issue. We apologise for any inconvenience caused.


Last modified by adavison on 2022/10/04 13:55

From version 11.5
edited by adavison
on 2021/09/30 14:20
Change comment: There is no comment for this version
To version 11.4
edited by adavison
on 2021/09/30 14:18
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -233,7 +233,8 @@
233 233   ),
234 234   title="Response of first five neurons with heterogeneous parameters",
235 235   annotations="Simulated with NEST"
236 -).show()
236 +).show()(%%)
237 +\\**Run script in terminal, show figure**
237 237  )))
238 238  
239 239  Now we want to create synaptic connections between the neurons in Population 1 and those in Population 2. There are lots of different ways these could be connected.
... ... @@ -310,48 +310,10 @@
310 310   ),
311 311   title="Response of first five neurons with heterogeneous parameters",
312 312   annotations="Simulated with NEST"
313 -).show()
314 +).show()(%%)
315 +\\**Run script in terminal, show figure**
314 314  )))
315 315  
316 -(% class="wikigeneratedid" %)
317 -Finally, let's update our figure, by adding a second panel to show the responses of Population 2.
318 -
319 -(% class="box infomessage" %)
320 -(((
321 -**Screencast** - current state of editor
322 -\\(% style="color:#000000" %)"""Simple network model using PyNN"""
323 -\\import pyNN.nest as sim(%%)
324 -(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
325 -(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%)
326 -(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
327 -(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
328 - (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}),
329 - v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
330 - v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
331 -(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
332 -(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
333 -(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2")
334 -population2.set(i_offset=0)
335 -population1.record("v")
336 -population2.record("v")(%%)
337 -(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5)
338 -synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5)
339 -connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%)
340 -(% style="color:#000000" %)sim.run(100.0)(%%)
341 -(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
342 -Figure(
343 - Panel(
344 - data_v[:, 0:5],
345 - xticks=True, xlabel="Time (ms)",
346 - yticks=True, ylabel="Membrane potential (mV)"
347 - ),
348 - title="Response of first five neurons with heterogeneous parameters",
349 - annotations="Simulated with NEST"
350 -).show()
351 -
352 -Run script in terminal, show figure
353 -)))
354 -
355 355  (% class="wikigeneratedid" id="HSummary28Inthistutorial2CyouhavelearnedtodoX202629" %)
356 356  (% class="small" %)**Summary (In this tutorial, you have learned to do X…)**
357 357