Changes for page 03. Building and simulating a simple model
Last modified by adavison on 2022/10/04 13:55
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -142,17 +142,11 @@ 142 142 143 143 (% class="box infomessage" %) 144 144 ((( 145 -**Screencast** - current state of editor 146 -\\(% style="color:#000000" %)"""Simple network model using PyNN""" 147 -\\import pyNN.nest as sim(%%) 148 -(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 149 -(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 150 -(% style="color:#000000" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 151 -(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1") 152 -population1.record("v") 153 -sim.run(100.0)(%%) 154 -(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 155 -Figure( 145 +**Screencast** - changes in editor 146 + 147 + 148 +**...** 149 +(% style="color:#000000" %)Figure( 156 156 Panel( 157 157 data_v[:, (% style="color:#e74c3c" %)0:5(% style="color:#000000" %)], 158 158 xticks=True, xlabel="Time (ms)", ... ... @@ -168,7 +168,7 @@ 168 168 169 169 (% class="box infomessage" %) 170 170 ((( 171 -**Screencast** - c urrent stateofeditor165 +**Screencast** - changes in editor 172 172 \\(% style="color:#000000" %)"""Simple network model using PyNN""" 173 173 \\import pyNN.nest as sim(%%) 174 174 (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) ... ... @@ -179,11 +179,12 @@ 179 179 v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 180 180 v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 181 181 (% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 182 -(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1") 183 -population1.record("v") 184 -sim.run(100.0)(%%) 185 -(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 186 -Figure( 176 + 177 + 178 +**...** 179 + 180 + 181 +(% style="color:#000000" %)Figure( 187 187 Panel( 188 188 data_v[:, 0:5], 189 189 xticks=True, xlabel="Time (ms)", ... ... @@ -207,17 +207,8 @@ 207 207 208 208 (% class="box infomessage" %) 209 209 ((( 210 -**Screencast** - current state of editor 211 -\\(% style="color:#000000" %)"""Simple network model using PyNN""" 212 -\\import pyNN.nest as sim(%%) 213 -(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 214 -(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 215 -(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 216 -(% style="color:#000000" %)cell_type = sim.IF_curr_exp( 217 - (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), 218 - v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 219 - v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 220 -(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 205 +**Screencast** - changes in editor 206 +\\**...** 221 221 (% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 222 222 (% style="color:#e74c3c" %)population2 = sim.Population(100, cell_type, label="Population 2") 223 223 population2.set(i_offset=0)(%%) ... ... @@ -224,16 +224,7 @@ 224 224 (% style="color:#000000" %)population1.record("v")(%%) 225 225 (% style="color:#e74c3c" %)population2.record("v")(%%) 226 226 (% style="color:#000000" %)sim.run(100.0)(%%) 227 -(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 228 -Figure( 229 - Panel( 230 - data_v[:, 0:5], 231 - xticks=True, xlabel="Time (ms)", 232 - yticks=True, ylabel="Membrane potential (mV)" 233 - ), 234 - title="Response of first five neurons with heterogeneous parameters", 235 - annotations="Simulated with NEST" 236 -).show() 213 +**...** 237 237 ))) 238 238 239 239 Now we want to create synaptic connections between the neurons in Population 1 and those in Population 2. There are lots of different ways these could be connected. ... ... @@ -281,46 +281,54 @@ 281 281 282 282 (% class="box infomessage" %) 283 283 ((( 284 -**Screencast** - current state of editor 285 -\\(% style="color:#000000" %)"""Simple network model using PyNN""" 286 -\\import pyNN.nest as sim(%%) 287 -(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 288 -(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 289 -(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 290 -(% style="color:#000000" %)cell_type = sim.IF_curr_exp( 291 - (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), 292 - v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 293 - v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 294 -(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 295 -(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 296 -(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2") 297 -population2.set(i_offset=0) 298 -population1.record("v") 299 -population2.record("v")(%%) 261 +**Screencast** - changes in editor 262 + 263 + 264 +**...** 265 +(% style="color:#000000" %)population2.record("v")(%%) 300 300 (% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5) 301 301 synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 302 302 connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 303 303 (% style="color:#000000" %)sim.run(100.0)(%%) 304 -(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 305 -Figure( 270 +**...** 271 +))) 272 + 273 +(% class="wikigeneratedid" %) 274 +Finally, let's update our figure, by adding a second panel to show the responses of Population 2. 275 + 276 +(% class="box infomessage" %) 277 +((( 278 +**Screencast** - changes in editor 279 +\\**...** 280 +(% style="color:#000000" %)sim.run(100.0)(%%) 281 +(% style="color:#e74c3c" %)data1_v(% style="color:#000000" %) = population1.get_data().segments[0].filter(name='v')[0](%%) 282 +(% style="color:#e74c3c" %)data2_v = population2.get_data().segments[0].filter(name='v')[0](%%) 283 +(% style="color:#000000" %)Figure( 306 306 Panel( 307 - data_v[:, 0:5], 308 - xticks=True, xlabel="Time (ms)", 309 - yticks=True, ylabel="Membrane potential (mV)" 285 + (% style="color:#e74c3c" %)data1_v(% style="color:#000000" %)[:, 0:5], 286 + xticks=True, (% style="color:#e74c3c" %)--xlabel="Time (ms)",--(%%) 287 +(% style="color:#000000" %) yticks=True, ylabel="Membrane potential (mV)" 310 310 ), 311 - title="Response of first five neurons with heterogeneous parameters", 289 + (% style="color:#e74c3c" %)Panel( 290 + data2_v[:, 0:5], 291 + xticks=True, xlabel="Time (ms)", 292 + yticks=True" 293 + ),(%%) 294 +(% style="color:#000000" %) title="Response of (% style="color:#e74c3c" %)simple network(% style="color:#000000" %)", 312 312 annotations="Simulated with NEST" 313 313 ).show() 297 + 298 +**Run script in terminal, show figure** 314 314 ))) 315 315 316 316 (% class="wikigeneratedid" %) 317 - Finally, let'supdateour figure,byaddingasecond panelto showthe responses ofPopulation2.302 +and there we have it, our simple neuronal network of integrate-and-fire neurons, written in PyNN, simulated with NEST. If you prefer to use the NEURON simulator, PyNN makes this very simple, we import the PyNN-for-NEURON module instead. 318 318 319 319 (% class="box infomessage" %) 320 320 ((( 321 -**Screencast** - currentstate of editor306 +**Screencast** - final state of editor 322 322 \\(% style="color:#000000" %)"""Simple network model using PyNN""" 323 -\\import pyNN.nest as sim(%%) 308 +\\import pyNN.(% style="color:#e74c3c" %)neuron(% style="color:#000000" %) as sim(%%) 324 324 (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 325 325 (% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 326 326 (% style="color:#000000" %)sim.setup(timestep=0.1)(%%) ... ... @@ -338,42 +338,47 @@ 338 338 synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 339 339 connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 340 340 (% style="color:#000000" %)sim.run(100.0)(%%) 341 -(% style="color:# e74c3c" %)data1_v(% style="color:#000000" %)= population1.get_data().segments[0].filter(name='v')[0](%%)342 - (% style="color:#e74c3c" %)data2_v = population2.get_data().segments[0].filter(name='v')[0](%%)343 - (% style="color:#000000" %)Figure(326 +(% style="color:#000000" %)data1_v = population1.get_data().segments[0].filter(name='v')[0] 327 +data2_v = population2.get_data().segments[0].filter(name='v')[0] 328 +Figure( 344 344 Panel( 345 - (% style="color:#e74c3c" %)data1_v(% style="color:#000000" %)[:, 0:5],346 - xticks=True, (% style="color:#e74c3c" %)--xlabel="Time (ms)",--(%%)347 - (%style="color:#000000"%)330 + data1_v[:, 0:5], 331 + xticks=True, 332 + yticks=True, ylabel="Membrane potential (mV)" 348 348 ), 349 - (% style="color:#e74c3c" %)Panel(334 + Panel( 350 350 data2_v[:, 0:5], 351 351 xticks=True, xlabel="Time (ms)", 352 352 yticks=True" 353 353 ),(%%) 354 -(% style="color:#000000" %) title="Response of (%style="color:#e74c3c" %)simple network(% style="color:#000000" %)",355 - annotations="Simulated with NE ST"339 +(% style="color:#000000" %) title="Response of simple network", 340 + annotations="Simulated with (% style="color:#e74c3c" %)NEURON(% style="color:#000000" %)" 356 356 ).show() 357 357 358 358 **Run script in terminal, show figure** 359 359 ))) 360 360 361 -(% class="wikigeneratedid" id="HSummary28Inthistutorial2CyouhavelearnedtodoX202629"%)362 - (% class="small"%)**Summary(Inthis tutorial,youhavelearnedtodoX…)**346 +(% class="wikigeneratedid" %) 347 +As you would hope, NEST and NEURON give essentially identical results. 363 363 364 -. 349 +(% class="box successmessage" %) 350 +((( 351 +**Slide** recap of learning objectives 352 +))) 365 365 366 -(% class="wikigeneratedid" id="HAcknowledgementsifappropriate" %) 367 -(% class="small" %)**Acknowledgements if appropriate** 354 +That is the end of this tutorial, in which I've demonstrated how to build a simple network using PyNN, and to simulate it using two different simulators, NEST and NEURON. 368 368 369 -. 356 +Of course, PyNN allows you to create much more complex networks than this, with more realistic neuron models, synaptic plasticity, spatial structure, and so on. You can also use other simulators, such as Brian or SpiNNaker, and you can run simulations in parallel on clusters or supercomputers. 370 370 371 -(% class="wikigeneratedid" id="HReferencestowebsites28Formoreinformation2Cvisitusat202629" %) 372 -(% class="small" %)**References to websites (For more information, visit us at…)** 358 +We will be releasing a series of tutorials, throughout the rest of 2021 and 2022, to introduce these more advanced features of PyNN, so keep an eye on the EBRAINS website. 373 373 374 -. 360 +(% class="box successmessage" %) 361 +((( 362 +**Slide** acknowledgements, contact information 363 +))) 375 375 376 -(% class="wikigeneratedid" id="HContactinformation28Forquestions2Ccontactusat202629"%)377 - (%class="small"%)**Contact information(Forquestions,contactusat…)**365 +(% class="wikigeneratedid" %) 366 +PyNN has been developed by many different people, with financial support from several different organisations. I'd like to mention in particular the CNRS and the European Commission, through the FACETS, BrainScaleS and Human Brain Project grants. 378 378 379 -. 368 +(% class="wikigeneratedid" %) 369 +For more information visit neuralensemble.org/PyNN. If you have questions you can contact us through the PyNN Github project, the NeuralEnsemble forum, EBRAINS support, or the EBRAINS Community.