Changes for page 03. Building and simulating a simple model
Last modified by adavison on 2022/10/04 13:55
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -334,78 +334,24 @@ 334 334 population2.set(i_offset=0) 335 335 population1.record("v") 336 336 population2.record("v")(%%) 337 -(% style="color:# 000000" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5)337 +(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5) 338 338 synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 339 339 connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 340 340 (% style="color:#000000" %)sim.run(100.0)(%%) 341 -(% style="color:#e74c3c" %)data1_v(% style="color:#000000" %) = population1.get_data().segments[0].filter(name='v')[0](%%) 342 -(% style="color:#e74c3c" %)data2_v = population2.get_data().segments[0].filter(name='v')[0](%%) 343 -(% style="color:#000000" %)Figure( 344 - Panel( 345 - (% style="color:#e74c3c" %)data1_v(% style="color:#000000" %)[:, 0:5], 346 - xticks=True, (% style="color:#e74c3c" %)--xlabel="Time (ms)",--(%%) 347 -(% style="color:#000000" %) yticks=True, ylabel="Membrane potential (mV)" 348 - ), 349 - (% style="color:#e74c3c" %)Panel( 350 - data2_v[:, 0:5], 351 - xticks=True, xlabel="Time (ms)", 352 - yticks=True" 353 - ),(%%) 354 -(% style="color:#000000" %) title="Response of (% style="color:#e74c3c" %)simple network(% style="color:#000000" %)", 355 - annotations="Simulated with NEST" 356 -).show() 357 - 358 -**Run script in terminal, show figure** 359 -))) 360 - 361 -(% class="wikigeneratedid" %) 362 -and there we have it, our simple neuronal network of integrate-and-fire neurons, written in PyNN, simulated with NEST. If you prefer to use the NEURON simulator, PyNN makes this very simple, we import the PyNN-for-NEURON module instead. 363 - 364 -(% class="box infomessage" %) 365 -((( 366 -**Screencast** - current state of editor 367 -\\(% style="color:#000000" %)"""Simple network model using PyNN""" 368 -\\import pyNN.(% style="color:#e74c3c" %)neuron(% style="color:#000000" %) as sim(%%) 369 -(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 370 -(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 371 -(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 372 -(% style="color:#000000" %)cell_type = sim.IF_curr_exp( 373 - (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), 374 - v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 375 - v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 376 -(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 377 -(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 378 -(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2") 379 -population2.set(i_offset=0) 380 -population1.record("v") 381 -population2.record("v")(%%) 382 -(% style="color:#000000" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5) 383 -synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 384 -connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 385 -(% style="color:#000000" %)sim.run(100.0)(%%) 386 -(% style="color:#000000" %)data1_v = population1.get_data().segments[0].filter(name='v')[0] 387 -data2_v = population2.get_data().segments[0].filter(name='v')[0] 341 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 388 388 Figure( 389 389 Panel( 390 - data 1_v[:, 0:5],391 - xticks=True, 344 + data_v[:, 0:5], 345 + xticks=True, xlabel="Time (ms)", 392 392 yticks=True, ylabel="Membrane potential (mV)" 393 393 ), 394 - Panel( 395 - data2_v[:, 0:5], 396 - xticks=True, xlabel="Time (ms)", 397 - yticks=True" 398 - ),(%%) 399 -(% style="color:#000000" %) title="Response of simple network", 400 - annotations="Simulated with (% style="color:#e74c3c" %)NEURON(% style="color:#000000" %)" 348 + title="Response of first five neurons with heterogeneous parameters", 349 + annotations="Simulated with NEST" 401 401 ).show() 402 402 403 - **Run script in terminal, show figure**352 +Run script in terminal, show figure 404 404 ))) 405 405 406 -(% class="wikigeneratedid" %) 407 -As you would hope, NEST and NEURON give essentially identical results. 408 - 409 409 (% class="wikigeneratedid" id="HSummary28Inthistutorial2CyouhavelearnedtodoX202629" %) 410 410 (% class="small" %)**Summary (In this tutorial, you have learned to do X…)** 411 411