Changes for page 03. Building and simulating a simple model
Last modified by adavison on 2022/10/04 13:55
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -334,96 +334,43 @@ 334 334 population2.set(i_offset=0) 335 335 population1.record("v") 336 336 population2.record("v")(%%) 337 -(% style="color:# 000000" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5)337 +(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5) 338 338 synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 339 339 connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 340 340 (% style="color:#000000" %)sim.run(100.0)(%%) 341 -(% style="color:#e74c3c" %)data1_v(% style="color:#000000" %) = population1.get_data().segments[0].filter(name='v')[0](%%) 342 -(% style="color:#e74c3c" %)data2_v = population2.get_data().segments[0].filter(name='v')[0](%%) 343 -(% style="color:#000000" %)Figure( 344 - Panel( 345 - (% style="color:#e74c3c" %)data1_v(% style="color:#000000" %)[:, 0:5], 346 - xticks=True, (% style="color:#e74c3c" %)--xlabel="Time (ms)",--(%%) 347 -(% style="color:#000000" %) yticks=True, ylabel="Membrane potential (mV)" 348 - ), 349 - (% style="color:#e74c3c" %)Panel( 350 - data2_v[:, 0:5], 351 - xticks=True, xlabel="Time (ms)", 352 - yticks=True" 353 - ),(%%) 354 -(% style="color:#000000" %) title="Response of (% style="color:#e74c3c" %)simple network(% style="color:#000000" %)", 355 - annotations="Simulated with NEST" 356 -).show() 357 - 358 -**Run script in terminal, show figure** 359 -))) 360 - 361 -(% class="wikigeneratedid" %) 362 -and there we have it, our simple neuronal network of integrate-and-fire neurons, written in PyNN, simulated with NEST. If you prefer to use the NEURON simulator, PyNN makes this very simple, we import the PyNN-for-NEURON module instead. 363 - 364 -(% class="box infomessage" %) 365 -((( 366 -**Screencast** - current state of editor 367 -\\(% style="color:#000000" %)"""Simple network model using PyNN""" 368 -\\import pyNN.(% style="color:#e74c3c" %)neuron(% style="color:#000000" %) as sim(%%) 369 -(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 370 -(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 371 -(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 372 -(% style="color:#000000" %)cell_type = sim.IF_curr_exp( 373 - (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), 374 - v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 375 - v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 376 -(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 377 -(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 378 -(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2") 379 -population2.set(i_offset=0) 380 -population1.record("v") 381 -population2.record("v")(%%) 382 -(% style="color:#000000" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5) 383 -synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 384 -connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 385 -(% style="color:#000000" %)sim.run(100.0)(%%) 386 -(% style="color:#000000" %)data1_v = population1.get_data().segments[0].filter(name='v')[0] 387 -data2_v = population2.get_data().segments[0].filter(name='v')[0] 341 +(% style="color:#000000" %)data1_v = population1.get_data().segments[0].filter(name='v')[0] 342 +data2_v = population1.get_data().segments[0].filter(name='v')[0] 388 388 Figure( 389 389 Panel( 390 - data 1_v[:, 0:5],391 - xticks=True, 345 + data_v[:, 0:5], 346 + xticks=True, xlabel="Time (ms)", 392 392 yticks=True, ylabel="Membrane potential (mV)" 393 393 ), 394 - Panel( 395 - data2_v[:, 0:5], 396 - xticks=True, xlabel="Time (ms)", 397 - yticks=True" 398 - ),(%%) 399 -(% style="color:#000000" %) title="Response of simple network", 400 - annotations="Simulated with (% style="color:#e74c3c" %)NEURON(% style="color:#000000" %)" 349 + 350 + 351 +(% style="color:#000000" %) title="Response of first five neurons with heterogeneous parameters", 352 + annotations="Simulated with NEST" 401 401 ).show() 402 402 403 403 **Run script in terminal, show figure** 404 404 ))) 405 405 406 -(% class="wikigeneratedid" %) 407 - Asyou wouldhope, NESTandNEURON give essentiallyidenticalresults.358 +(% class="wikigeneratedid" id="HSummary28Inthistutorial2CyouhavelearnedtodoX202629" %) 359 +(% class="small" %)**Summary (In this tutorial, you have learned to do X…)** 408 408 409 -(% class="box successmessage" %) 410 -((( 411 -**Slide** recap of learning objectives 412 -))) 361 +. 413 413 414 -That is the end of this tutorial, in which I've demonstrated how to build a simple network using PyNN, and to simulate it using two different simulators, NEST and NEURON. 363 +(% class="wikigeneratedid" id="HAcknowledgementsifappropriate" %) 364 +(% class="small" %)**Acknowledgements if appropriate** 415 415 416 - Of course, PyNN allows you to create much more complex networks than this, with more realistic neuron models, synaptic plasticity, spatial structure, and so on.You can also use other simulators, such as Brian or SpiNNaker, and you can run simulations in parallel on clusters or supercomputers.366 +. 417 417 418 -We will be releasing a series of tutorials, throughout the rest of 2021 and 2022, to introduce these more advanced features of PyNN, so keep an eye on the EBRAINS website. 368 +(% class="wikigeneratedid" id="HReferencestowebsites28Formoreinformation2Cvisitusat202629" %) 369 +(% class="small" %)**References to websites (For more information, visit us at…)** 419 419 420 -(% class="box successmessage" %) 421 -((( 422 -**Slide** acknowledgements, contact information 423 -))) 371 +. 424 424 425 -(% class="wikigeneratedid" %) 426 - PyNNhasbeen developed bymany different people,with financial supportfrom several differentorganisations.I'd like tomention in particularthe CNRS and the European Commission,throughthe FACETS, BrainScaleSand HumanBrain Projectgrants.373 +(% class="wikigeneratedid" id="HContactinformation28Forquestions2Ccontactusat202629" %) 374 +(% class="small" %)**Contact information (For questions, contact us at…)** 427 427 428 -(% class="wikigeneratedid" %) 429 -For more information visit neuralensemble.org/PyNN. If you have questions you can contact us through the PyNN Github project, the NeuralEnsemble forum, EBRAINS support, or the EBRAINS Community. 376 +.