Changes for page 03. Building and simulating a simple model
Last modified by adavison on 2022/10/04 13:55
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -142,17 +142,11 @@ 142 142 143 143 (% class="box infomessage" %) 144 144 ((( 145 -**Screencast** - current state of editor 146 -\\(% style="color:#000000" %)"""Simple network model using PyNN""" 147 -\\import pyNN.nest as sim(%%) 148 -(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 149 -(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 150 -(% style="color:#000000" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 151 -(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1") 152 -population1.record("v") 153 -sim.run(100.0)(%%) 154 -(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 155 -Figure( 145 +**Screencast** - changes in editor 146 + 147 + 148 +**...** 149 +(% style="color:#000000" %)Figure( 156 156 Panel( 157 157 data_v[:, (% style="color:#e74c3c" %)0:5(% style="color:#000000" %)], 158 158 xticks=True, xlabel="Time (ms)", ... ... @@ -168,7 +168,7 @@ 168 168 169 169 (% class="box infomessage" %) 170 170 ((( 171 -**Screencast** - c urrent stateofeditor165 +**Screencast** - changes in editor 172 172 \\(% style="color:#000000" %)"""Simple network model using PyNN""" 173 173 \\import pyNN.nest as sim(%%) 174 174 (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) ... ... @@ -179,11 +179,12 @@ 179 179 v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 180 180 v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 181 181 (% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 182 -(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1") 183 -population1.record("v") 184 -sim.run(100.0)(%%) 185 -(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 186 -Figure( 176 + 177 + 178 +**...** 179 + 180 + 181 +(% style="color:#000000" %)Figure( 187 187 Panel( 188 188 data_v[:, 0:5], 189 189 xticks=True, xlabel="Time (ms)", ... ... @@ -207,17 +207,8 @@ 207 207 208 208 (% class="box infomessage" %) 209 209 ((( 210 -**Screencast** - current state of editor 211 -\\(% style="color:#000000" %)"""Simple network model using PyNN""" 212 -\\import pyNN.nest as sim(%%) 213 -(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 214 -(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 215 -(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 216 -(% style="color:#000000" %)cell_type = sim.IF_curr_exp( 217 - (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), 218 - v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 219 - v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 220 -(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 205 +**Screencast** - changes in editor 206 +\\**...** 221 221 (% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 222 222 (% style="color:#e74c3c" %)population2 = sim.Population(100, cell_type, label="Population 2") 223 223 population2.set(i_offset=0)(%%) ... ... @@ -224,16 +224,7 @@ 224 224 (% style="color:#000000" %)population1.record("v")(%%) 225 225 (% style="color:#e74c3c" %)population2.record("v")(%%) 226 226 (% style="color:#000000" %)sim.run(100.0)(%%) 227 -(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 228 -Figure( 229 - Panel( 230 - data_v[:, 0:5], 231 - xticks=True, xlabel="Time (ms)", 232 - yticks=True, ylabel="Membrane potential (mV)" 233 - ), 234 - title="Response of first five neurons with heterogeneous parameters", 235 - annotations="Simulated with NEST" 236 -).show() 213 +**...** 237 237 ))) 238 238 239 239 Now we want to create synaptic connections between the neurons in Population 1 and those in Population 2. There are lots of different ways these could be connected. ... ... @@ -281,36 +281,16 @@ 281 281 282 282 (% class="box infomessage" %) 283 283 ((( 284 -**Screencast** - current state of editor 285 -\\(% style="color:#000000" %)"""Simple network model using PyNN""" 286 -\\import pyNN.nest as sim(%%) 287 -(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 288 -(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 289 -(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 290 -(% style="color:#000000" %)cell_type = sim.IF_curr_exp( 291 - (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), 292 - v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 293 - v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 294 -(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 295 -(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 296 -(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2") 297 -population2.set(i_offset=0) 298 -population1.record("v") 299 -population2.record("v")(%%) 261 +**Screencast** - changes in editor 262 + 263 + 264 +**...** 265 +(% style="color:#000000" %)population2.record("v")(%%) 300 300 (% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5) 301 301 synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 302 302 connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 303 303 (% style="color:#000000" %)sim.run(100.0)(%%) 304 -(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 305 -Figure( 306 - Panel( 307 - data_v[:, 0:5], 308 - xticks=True, xlabel="Time (ms)", 309 - yticks=True, ylabel="Membrane potential (mV)" 310 - ), 311 - title="Response of first five neurons with heterogeneous parameters", 312 - annotations="Simulated with NEST" 313 -).show() 270 +**...** 314 314 ))) 315 315 316 316 (% class="wikigeneratedid" %) ... ... @@ -318,25 +318,8 @@ 318 318 319 319 (% class="box infomessage" %) 320 320 ((( 321 -**Screencast** - current state of editor 322 -\\(% style="color:#000000" %)"""Simple network model using PyNN""" 323 -\\import pyNN.nest as sim(%%) 324 -(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 325 -(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 326 -(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 327 -(% style="color:#000000" %)cell_type = sim.IF_curr_exp( 328 - (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), 329 - v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 330 - v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 331 -(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 332 -(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 333 -(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2") 334 -population2.set(i_offset=0) 335 -population1.record("v") 336 -population2.record("v")(%%) 337 -(% style="color:#000000" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5) 338 -synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 339 -connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 278 +**Screencast** - changes in editor 279 +\\**...** 340 340 (% style="color:#000000" %)sim.run(100.0)(%%) 341 341 (% style="color:#e74c3c" %)data1_v(% style="color:#000000" %) = population1.get_data().segments[0].filter(name='v')[0](%%) 342 342 (% style="color:#e74c3c" %)data2_v = population2.get_data().segments[0].filter(name='v')[0](%%) ... ... @@ -363,7 +363,7 @@ 363 363 364 364 (% class="box infomessage" %) 365 365 ((( 366 -**Screencast** - currentstate of editor306 +**Screencast** - final state of editor 367 367 \\(% style="color:#000000" %)"""Simple network model using PyNN""" 368 368 \\import pyNN.(% style="color:#e74c3c" %)neuron(% style="color:#000000" %) as sim(%%) 369 369 (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)