Attention: Data Proxy will be migrated from SWIFT to S3 storage at Friday, the 9th of May 2025 starting from 9pm CEST (my timezone). For more details, please join the rocket chat channel https://chat.ebrains.eu/channel/data-proxy-user-group


Last modified by adavison on 2022/10/04 13:55

From version 15.1
edited by adavison
on 2021/09/30 15:30
Change comment: There is no comment for this version
To version 11.3
edited by adavison
on 2021/09/30 14:01
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -142,11 +142,17 @@
142 142  
143 143  (% class="box infomessage" %)
144 144  (((
145 -**Screencast** - changes in editor
146 -
147 -
148 -**...**
149 -(% style="color:#000000" %)Figure(
145 +**Screencast** - current state of editor
146 +\\(% style="color:#000000" %)"""Simple network model using PyNN"""
147 +\\import pyNN.nest as sim(%%)
148 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
149 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
150 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
151 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")
152 +population1.record("v")
153 +sim.run(100.0)(%%)
154 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
155 +Figure(
150 150   Panel(
151 151   data_v[:, (% style="color:#e74c3c" %)0:5(% style="color:#000000" %)],
152 152   xticks=True, xlabel="Time (ms)",
... ... @@ -162,7 +162,7 @@
162 162  
163 163  (% class="box infomessage" %)
164 164  (((
165 -**Screencast** - changes in editor
171 +**Screencast** - current state of editor
166 166  \\(% style="color:#000000" %)"""Simple network model using PyNN"""
167 167  \\import pyNN.nest as sim(%%)
168 168  (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
... ... @@ -173,12 +173,11 @@
173 173   v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
174 174   v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
175 175  (% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
176 -
177 -
178 -**...**
179 -
180 -
181 -(% style="color:#000000" %)Figure(
182 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")
183 +population1.record("v")
184 +sim.run(100.0)(%%)
185 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
186 +Figure(
182 182   Panel(
183 183   data_v[:, 0:5],
184 184   xticks=True, xlabel="Time (ms)",
... ... @@ -202,110 +202,9 @@
202 202  
203 203  (% class="box infomessage" %)
204 204  (((
205 -**Screencast** - changes in editor
206 -\\**...**
207 -(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
208 -(% style="color:#e74c3c" %)population2 = sim.Population(100, cell_type, label="Population 2")
209 -population2.set(i_offset=0)(%%)
210 -(% style="color:#000000" %)population1.record("v")(%%)
211 -(% style="color:#e74c3c" %)population2.record("v")(%%)
212 -(% style="color:#000000" %)sim.run(100.0)(%%)
213 -**...**
214 -)))
215 -
216 -Now we want to create synaptic connections between the neurons in Population 1 and those in Population 2. There are lots of different ways these could be connected.
217 -
218 -(% class="box successmessage" %)
219 -(((
220 -**Slide** showing all-to-all connections
221 -)))
222 -
223 -We could connect all neurons in Population 1 to all those in Population 2.
224 -
225 -(% class="box successmessage" %)
226 -(((
227 -**Slide** showing random connections
228 -)))
229 -
230 -We could connect the populations randomly, in several different ways.
231 -
232 -(% class="box successmessage" %)
233 -(((
234 -**Slide** showing distance-dependent connections
235 -)))
236 -
237 -(% class="wikigeneratedid" %)
238 -We could connect the populations randomly, but with a probability of connection that depends on the distance between the neurons.
239 -
240 -(% class="box successmessage" %)
241 -(((
242 -**Slide** showing explicit lists of connections
243 -)))
244 -
245 -(% class="wikigeneratedid" %)
246 -Or we could connect the neurons in a very specific manner, based on an explicit list of connections.
247 -
248 -(% class="wikigeneratedid" %)
249 -Just as PyNN provides a variety of neuron models, so it comes with a range of connection algorithms built in. You can also add your own connection methods.
250 -
251 -(% class="box successmessage" %)
252 -(((
253 -**Slide** showing addition of second population, and of connections between them, labelled as a Projection.
254 -)))
255 -
256 -(% class="wikigeneratedid" %)
257 -In PyNN, we call a group of connections between two populations a _Projection_. To create a Projection, we need to specify the presynaptic population, the postsynaptic population, the connection algorithm, and the synapse model. Here we're using the simplest synapse model available in PyNN, for which the synaptic weight is constant over time, there is no plasticity.
258 -
259 -(% class="box infomessage" %)
260 -(((
261 -**Screencast** - changes in editor
262 -
263 -
264 -**...**
265 -(% style="color:#000000" %)population2.record("v")(%%)
266 -(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5)
267 -synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5)
268 -connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%)
269 -(% style="color:#000000" %)sim.run(100.0)(%%)
270 -**...**
271 -)))
272 -
273 -(% class="wikigeneratedid" %)
274 -Finally, let's update our figure, by adding a second panel to show the responses of Population 2.
275 -
276 -(% class="box infomessage" %)
277 -(((
278 -**Screencast** - changes in editor
279 -\\**...**
280 -(% style="color:#000000" %)sim.run(100.0)(%%)
281 -(% style="color:#e74c3c" %)data1_v(% style="color:#000000" %) = population1.get_data().segments[0].filter(name='v')[0](%%)
282 -(% style="color:#e74c3c" %)data2_v = population2.get_data().segments[0].filter(name='v')[0](%%)
283 -(% style="color:#000000" %)Figure(
284 - Panel(
285 - (% style="color:#e74c3c" %)data1_v(% style="color:#000000" %)[:, 0:5],
286 - xticks=True, (% style="color:#e74c3c" %)--xlabel="Time (ms)",--(%%)
287 -(% style="color:#000000" %) yticks=True, ylabel="Membrane potential (mV)"
288 - ),
289 - (% style="color:#e74c3c" %)Panel(
290 - data2_v[:, 0:5],
291 - xticks=True, xlabel="Time (ms)",
292 - yticks=True"
293 - ),(%%)
294 -(% style="color:#000000" %) title="Response of (% style="color:#e74c3c" %)simple network(% style="color:#000000" %)",
295 - annotations="Simulated with NEST"
296 -).show()
297 -
298 -**Run script in terminal, show figure**
299 -)))
300 -
301 -(% class="wikigeneratedid" %)
302 -and there we have it, our simple neuronal network of integrate-and-fire neurons, written in PyNN, simulated with NEST. If you prefer to use the NEURON simulator, PyNN makes this very simple, we import the PyNN-for-NEURON module instead.
303 -
304 -(% class="box infomessage" %)
305 -(((
306 -**Screencast** - final state of editor
210 +**Screencast** - current state of editor
307 307  \\(% style="color:#000000" %)"""Simple network model using PyNN"""
308 -\\import pyNN.(% style="color:#e74c3c" %)neuron(% style="color:#000000" %) as sim(%%)
212 +\\import pyNN.nest as sim(%%)
309 309  (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
310 310  (% style="color:#000000" %)from pyNN.random import RandomDistribution(%%)
311 311  (% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
... ... @@ -315,55 +315,38 @@
315 315   v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
316 316  (% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
317 317  (% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
318 -(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2")
319 -population2.set(i_offset=0)
320 -population1.record("v")
321 -population2.record("v")(%%)
322 -(% style="color:#000000" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5)
323 -synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5)
324 -connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%)
325 -(% style="color:#000000" %)sim.run(100.0)(%%)
326 -(% style="color:#000000" %)data1_v = population1.get_data().segments[0].filter(name='v')[0]
327 -data2_v = population2.get_data().segments[0].filter(name='v')[0]
222 +(% style="color:#000000" %)population1.record("v")
223 +sim.run(100.0)(%%)
224 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
328 328  Figure(
329 329   Panel(
330 - data1_v[:, 0:5],
331 - xticks=True,
227 + data_v[:, 0:5],
228 + xticks=True, xlabel="Time (ms)",
332 332   yticks=True, ylabel="Membrane potential (mV)"
333 333   ),
334 - Panel(
335 - data2_v[:, 0:5],
336 - xticks=True, xlabel="Time (ms)",
337 - yticks=True"
338 - ),(%%)
339 -(% style="color:#000000" %) title="Response of simple network",
340 - annotations="Simulated with (% style="color:#e74c3c" %)NEURON(% style="color:#000000" %)"
341 -).show()
342 -
343 -**Run script in terminal, show figure**
231 + title="Response of first five neurons with heterogeneous parameters",
232 + annotations="Simulated with NEST"
233 +).show()(%%)
234 +\\**Run script in terminal, show figure**
344 344  )))
345 345  
346 -(% class="wikigeneratedid" %)
347 -As you would hope, NEST and NEURON give essentially identical results.
348 348  
349 -(% class="box successmessage" %)
350 -(((
351 -**Slide** recap of learning objectives
352 -)))
238 +(% class="wikigeneratedid" id="HSummary28Inthistutorial2CyouhavelearnedtodoX202629" %)
239 +(% class="small" %)**Summary (In this tutorial, you have learned to do X…)**
353 353  
354 -That is the end of this tutorial, in which I've demonstrated how to build a simple network using PyNN, and to simulate it using two different simulators, NEST and NEURON.
241 +.
355 355  
356 -Of course, PyNN allows you to create much more complex networks than this, with more realistic neuron models, synaptic plasticity, spatial structure, and so on. You can also use other simulators, such as Brian or SpiNNaker, and you can run simulations in parallel on clusters or supercomputers.
243 +(% class="wikigeneratedid" id="HAcknowledgementsifappropriate" %)
244 +(% class="small" %)**Acknowledgements if appropriate**
357 357  
358 -We will be releasing a series of tutorials, throughout the rest of 2021 and 2022, to introduce these more advanced features of PyNN, so keep an eye on the EBRAINS website.
246 +.
359 359  
360 -(% class="box successmessage" %)
361 -(((
362 -**Slide** acknowledgements, contact information
363 -)))
248 +(% class="wikigeneratedid" id="HReferencestowebsites28Formoreinformation2Cvisitusat202629" %)
249 +(% class="small" %)**References to websites (For more information, visit us at…)**
364 364  
365 -(% class="wikigeneratedid" %)
366 -PyNN has been developed by many different people, with financial support from several different organisations. I'd like to mention in particular the CNRS and the European Commission, through the FACETS, BrainScaleS and Human Brain Project grants.
251 +.
367 367  
368 -(% class="wikigeneratedid" %)
369 -For more information visit neuralensemble.org/PyNN. If you have questions you can contact us through the PyNN Github project, the NeuralEnsemble forum, EBRAINS support, or the EBRAINS Community.
253 +(% class="wikigeneratedid" id="HContactinformation28Forquestions2Ccontactusat202629" %)
254 +(% class="small" %)**Contact information (For questions, contact us at…)**
255 +
256 +.