Changes for page 03. Building and simulating a simple model
Last modified by adavison on 2022/10/04 13:55
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -142,11 +142,17 @@ 142 142 143 143 (% class="box infomessage" %) 144 144 ((( 145 -**Screencast** - changes in editor 146 - 147 - 148 -**...** 149 -(% style="color:#000000" %)Figure( 145 +**Screencast** - current state of editor 146 +\\(% style="color:#000000" %)"""Simple network model using PyNN""" 147 +\\import pyNN.nest as sim(%%) 148 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 149 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 150 +(% style="color:#000000" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 151 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1") 152 +population1.record("v") 153 +sim.run(100.0)(%%) 154 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 155 +Figure( 150 150 Panel( 151 151 data_v[:, (% style="color:#e74c3c" %)0:5(% style="color:#000000" %)], 152 152 xticks=True, xlabel="Time (ms)", ... ... @@ -162,7 +162,7 @@ 162 162 163 163 (% class="box infomessage" %) 164 164 ((( 165 -**Screencast** - c hangesineditor171 +**Screencast** - current state of editor 166 166 \\(% style="color:#000000" %)"""Simple network model using PyNN""" 167 167 \\import pyNN.nest as sim(%%) 168 168 (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) ... ... @@ -173,12 +173,11 @@ 173 173 v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 174 174 v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 175 175 (% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 176 - 177 - 178 -**...** 179 - 180 - 181 -(% style="color:#000000" %)Figure( 182 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1") 183 +population1.record("v") 184 +sim.run(100.0)(%%) 185 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 186 +Figure( 182 182 Panel( 183 183 data_v[:, 0:5], 184 184 xticks=True, xlabel="Time (ms)", ... ... @@ -202,8 +202,17 @@ 202 202 203 203 (% class="box infomessage" %) 204 204 ((( 205 -**Screencast** - changes in editor 206 -\\**...** 210 +**Screencast** - current state of editor 211 +\\(% style="color:#000000" %)"""Simple network model using PyNN""" 212 +\\import pyNN.nest as sim(%%) 213 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 214 +(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 215 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 216 +(% style="color:#000000" %)cell_type = sim.IF_curr_exp( 217 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), 218 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 219 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 220 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 207 207 (% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 208 208 (% style="color:#e74c3c" %)population2 = sim.Population(100, cell_type, label="Population 2") 209 209 population2.set(i_offset=0)(%%) ... ... @@ -210,7 +210,16 @@ 210 210 (% style="color:#000000" %)population1.record("v")(%%) 211 211 (% style="color:#e74c3c" %)population2.record("v")(%%) 212 212 (% style="color:#000000" %)sim.run(100.0)(%%) 213 -**...** 227 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 228 +Figure( 229 + Panel( 230 + data_v[:, 0:5], 231 + xticks=True, xlabel="Time (ms)", 232 + yticks=True, ylabel="Membrane potential (mV)" 233 + ), 234 + title="Response of first five neurons with heterogeneous parameters", 235 + annotations="Simulated with NEST" 236 +).show() 214 214 ))) 215 215 216 216 Now we want to create synaptic connections between the neurons in Population 1 and those in Population 2. There are lots of different ways these could be connected. ... ... @@ -258,54 +258,46 @@ 258 258 259 259 (% class="box infomessage" %) 260 260 ((( 261 -**Screencast** - changes in editor 262 - 263 - 264 -**...** 265 -(% style="color:#000000" %)population2.record("v")(%%) 284 +**Screencast** - current state of editor 285 +\\(% style="color:#000000" %)"""Simple network model using PyNN""" 286 +\\import pyNN.nest as sim(%%) 287 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 288 +(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 289 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 290 +(% style="color:#000000" %)cell_type = sim.IF_curr_exp( 291 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), 292 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 293 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 294 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 295 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 296 +(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2") 297 +population2.set(i_offset=0) 298 +population1.record("v") 299 +population2.record("v")(%%) 266 266 (% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5) 267 267 synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 268 268 connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 269 269 (% style="color:#000000" %)sim.run(100.0)(%%) 270 -**...** 271 -))) 272 - 273 -(% class="wikigeneratedid" %) 274 -Finally, let's update our figure, by adding a second panel to show the responses of Population 2. 275 - 276 -(% class="box infomessage" %) 277 -((( 278 -**Screencast** - changes in editor 279 -\\**...** 280 -(% style="color:#000000" %)sim.run(100.0)(%%) 281 -(% style="color:#e74c3c" %)data1_v(% style="color:#000000" %) = population1.get_data().segments[0].filter(name='v')[0](%%) 282 -(% style="color:#e74c3c" %)data2_v = population2.get_data().segments[0].filter(name='v')[0](%%) 283 -(% style="color:#000000" %)Figure( 304 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 305 +Figure( 284 284 Panel( 285 - (% style="color:#e74c3c" %)data1_v(% style="color:#000000" %)[:, 0:5], 286 - xticks=True, (% style="color:#e74c3c" %)--xlabel="Time (ms)",--(%%) 287 -(% style="color:#000000" %) yticks=True, ylabel="Membrane potential (mV)" 288 - ), 289 - (% style="color:#e74c3c" %)Panel( 290 - data2_v[:, 0:5], 307 + data_v[:, 0:5], 291 291 xticks=True, xlabel="Time (ms)", 292 - yticks=True" 293 - ), (%%)294 - (%style="color:#000000"%)(%style="color:#e74c3c"%)simple network(%style="color:#000000"%)",309 + yticks=True, ylabel="Membrane potential (mV)" 310 + ), 311 + title="Response of first five neurons with heterogeneous parameters", 295 295 annotations="Simulated with NEST" 296 296 ).show() 297 - 298 -**Run script in terminal, show figure** 299 299 ))) 300 300 301 301 (% class="wikigeneratedid" %) 302 - and there we have it,our simpleneuronal networkofntegrate-and-fire neurons,writteninPyNN,simulatedwith NEST. If youprefertousetheNEURON simulator, PyNN makesthisverysimple,we importthePyNN-for-NEURON moduleinstead.317 +Finally, let's update our figure, by adding a second panel to show the responses of Population 2. 303 303 304 304 (% class="box infomessage" %) 305 305 ((( 306 -**Screencast** - finalstate of editor321 +**Screencast** - current state of editor 307 307 \\(% style="color:#000000" %)"""Simple network model using PyNN""" 308 -\\import pyNN. (% style="color:#e74c3c" %)neuron(%style="color:#000000"%)as sim(%%)323 +\\import pyNN.nest as sim(%%) 309 309 (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 310 310 (% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 311 311 (% style="color:#000000" %)sim.setup(timestep=0.1)(%%) ... ... @@ -323,47 +323,42 @@ 323 323 synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 324 324 connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 325 325 (% style="color:#000000" %)sim.run(100.0)(%%) 326 -(% style="color:# 000000" %)data1_v = population1.get_data().segments[0].filter(name='v')[0]327 -data2_v = population2.get_data().segments[0].filter(name='v')[0] 328 -Figure( 341 +(% style="color:#e74c3c" %)data1_v(% style="color:#000000" %) = population1.get_data().segments[0].filter(name='v')[0](%%) 342 +(% style="color:#e74c3c" %)data2_v = population2.get_data().segments[0].filter(name='v')[0](%%) 343 +(% style="color:#000000" %)Figure( 329 329 Panel( 330 - data1_v[:, 0:5], 331 - xticks=True, 332 - yticks=True, ylabel="Membrane potential (mV)" 345 + (% style="color:#e74c3c" %)data1_v(% style="color:#000000" %)[:, 0:5], 346 + xticks=True, (% style="color:#e74c3c" %)--xlabel="Time (ms)",--(%%) 347 +(% style="color:#000000" %) yticks=True, ylabel="Membrane potential (mV)" 333 333 ), 334 - Panel( 349 + (% style="color:#e74c3c" %)Panel( 335 335 data2_v[:, 0:5], 336 336 xticks=True, xlabel="Time (ms)", 337 337 yticks=True" 338 338 ),(%%) 339 -(% style="color:#000000" %) title="Response of 340 - annotations="Simulated with (% style="color:#e74c3c" %)NEURON(% style="color:#000000" %)"354 +(% style="color:#000000" %) title="Response of (% style="color:#e74c3c" %)simple network(% style="color:#000000" %)", 355 + annotations="Simulated with NEST" 341 341 ).show() 342 342 343 343 **Run script in terminal, show figure** 344 344 ))) 345 345 346 -(% class="wikigeneratedid" %) 347 - Asyou wouldhope, NESTandNEURON give essentiallyidenticalresults.361 +(% class="wikigeneratedid" id="HSummary28Inthistutorial2CyouhavelearnedtodoX202629" %) 362 +(% class="small" %)**Summary (In this tutorial, you have learned to do X…)** 348 348 349 -(% class="box successmessage" %) 350 -((( 351 -**Slide** recap of learning objectives 352 -))) 364 +. 353 353 354 -That is the end of this tutorial, in which I've demonstrated how to build a simple network using PyNN, and to simulate it using two different simulators, NEST and NEURON. 366 +(% class="wikigeneratedid" id="HAcknowledgementsifappropriate" %) 367 +(% class="small" %)**Acknowledgements if appropriate** 355 355 356 - Of course, PyNN allows you to create much more complex networks than this, with more realistic neuron models, synaptic plasticity, spatial structure, and so on.You can also use other simulators, such as Brian or SpiNNaker, and you can run simulations in parallel on clusters or supercomputers.369 +. 357 357 358 -We will be releasing a series of tutorials, throughout the rest of 2021 and 2022, to introduce these more advanced features of PyNN, so keep an eye on the EBRAINS website. 371 +(% class="wikigeneratedid" id="HReferencestowebsites28Formoreinformation2Cvisitusat202629" %) 372 +(% class="small" %)**References to websites (For more information, visit us at…)** 359 359 360 -(% class="box successmessage" %) 361 -((( 362 -**Slide** acknowledgements, contact information 363 -))) 374 +. 364 364 365 -(% class="wikigeneratedid" %) 366 - PyNNhasbeen developed bymany different people,with financial supportfrom several differentorganisations.I'd like tomention in particularthe CNRS and the European Commission,throughthe FACETS, BrainScaleSand HumanBrain Projectgrants.376 +(% class="wikigeneratedid" id="HContactinformation28Forquestions2Ccontactusat202629" %) 377 +(% class="small" %)**Contact information (For questions, contact us at…)** 367 367 368 -(% class="wikigeneratedid" %) 369 -For more information visit neuralensemble.org/PyNN. If you have questions you can contact us through the PyNN Github project, the NeuralEnsemble forum, EBRAINS support, or the EBRAINS Community. 379 +.