Changes for page 03. Building and simulating a simple model
Last modified by adavison on 2022/10/04 13:55
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -142,11 +142,17 @@ 142 142 143 143 (% class="box infomessage" %) 144 144 ((( 145 -**Screencast** - changes in editor 146 - 147 - 148 -**...** 149 -(% style="color:#000000" %)Figure( 145 +**Screencast** - current state of editor 146 +\\(% style="color:#000000" %)"""Simple network model using PyNN""" 147 +\\import pyNN.nest as sim(%%) 148 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 149 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 150 +(% style="color:#000000" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 151 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1") 152 +population1.record("v") 153 +sim.run(100.0)(%%) 154 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 155 +Figure( 150 150 Panel( 151 151 data_v[:, (% style="color:#e74c3c" %)0:5(% style="color:#000000" %)], 152 152 xticks=True, xlabel="Time (ms)", ... ... @@ -162,7 +162,7 @@ 162 162 163 163 (% class="box infomessage" %) 164 164 ((( 165 -**Screencast** - c hangesineditor171 +**Screencast** - current state of editor 166 166 \\(% style="color:#000000" %)"""Simple network model using PyNN""" 167 167 \\import pyNN.nest as sim(%%) 168 168 (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) ... ... @@ -173,12 +173,11 @@ 173 173 v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 174 174 v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 175 175 (% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 176 - 177 - 178 -**...** 179 - 180 - 181 -(% style="color:#000000" %)Figure( 182 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1") 183 +population1.record("v") 184 +sim.run(100.0)(%%) 185 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 186 +Figure( 182 182 Panel( 183 183 data_v[:, 0:5], 184 184 xticks=True, xlabel="Time (ms)", ... ... @@ -202,8 +202,17 @@ 202 202 203 203 (% class="box infomessage" %) 204 204 ((( 205 -**Screencast** - changes in editor 206 -\\**...** 210 +**Screencast** - current state of editor 211 +\\(% style="color:#000000" %)"""Simple network model using PyNN""" 212 +\\import pyNN.nest as sim(%%) 213 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 214 +(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 215 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 216 +(% style="color:#000000" %)cell_type = sim.IF_curr_exp( 217 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), 218 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 219 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 220 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 207 207 (% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 208 208 (% style="color:#e74c3c" %)population2 = sim.Population(100, cell_type, label="Population 2") 209 209 population2.set(i_offset=0)(%%) ... ... @@ -210,7 +210,16 @@ 210 210 (% style="color:#000000" %)population1.record("v")(%%) 211 211 (% style="color:#e74c3c" %)population2.record("v")(%%) 212 212 (% style="color:#000000" %)sim.run(100.0)(%%) 213 -**...** 227 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 228 +Figure( 229 + Panel( 230 + data_v[:, 0:5], 231 + xticks=True, xlabel="Time (ms)", 232 + yticks=True, ylabel="Membrane potential (mV)" 233 + ), 234 + title="Response of first five neurons with heterogeneous parameters", 235 + annotations="Simulated with NEST" 236 +).show() 214 214 ))) 215 215 216 216 Now we want to create synaptic connections between the neurons in Population 1 and those in Population 2. There are lots of different ways these could be connected. ... ... @@ -258,16 +258,36 @@ 258 258 259 259 (% class="box infomessage" %) 260 260 ((( 261 -**Screencast** - changes in editor 262 - 263 - 264 -**...** 265 -(% style="color:#000000" %)population2.record("v")(%%) 284 +**Screencast** - current state of editor 285 +\\(% style="color:#000000" %)"""Simple network model using PyNN""" 286 +\\import pyNN.nest as sim(%%) 287 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 288 +(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 289 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 290 +(% style="color:#000000" %)cell_type = sim.IF_curr_exp( 291 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), 292 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 293 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 294 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 295 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 296 +(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2") 297 +population2.set(i_offset=0) 298 +population1.record("v") 299 +population2.record("v")(%%) 266 266 (% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5) 267 267 synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 268 268 connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 269 269 (% style="color:#000000" %)sim.run(100.0)(%%) 270 -**...** 304 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0] 305 +Figure( 306 + Panel( 307 + data_v[:, 0:5], 308 + xticks=True, xlabel="Time (ms)", 309 + yticks=True, ylabel="Membrane potential (mV)" 310 + ), 311 + title="Response of first five neurons with heterogeneous parameters", 312 + annotations="Simulated with NEST" 313 +).show() 271 271 ))) 272 272 273 273 (% class="wikigeneratedid" %) ... ... @@ -275,8 +275,25 @@ 275 275 276 276 (% class="box infomessage" %) 277 277 ((( 278 -**Screencast** - changes in editor 279 -\\**...** 321 +**Screencast** - current state of editor 322 +\\(% style="color:#000000" %)"""Simple network model using PyNN""" 323 +\\import pyNN.nest as sim(%%) 324 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 325 +(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 326 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 327 +(% style="color:#000000" %)cell_type = sim.IF_curr_exp( 328 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), 329 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 330 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 331 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 332 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 333 +(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2") 334 +population2.set(i_offset=0) 335 +population1.record("v") 336 +population2.record("v")(%%) 337 +(% style="color:#000000" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5) 338 +synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 339 +connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 280 280 (% style="color:#000000" %)sim.run(100.0)(%%) 281 281 (% style="color:#e74c3c" %)data1_v(% style="color:#000000" %) = population1.get_data().segments[0].filter(name='v')[0](%%) 282 282 (% style="color:#e74c3c" %)data2_v = population2.get_data().segments[0].filter(name='v')[0](%%) ... ... @@ -303,7 +303,7 @@ 303 303 304 304 (% class="box infomessage" %) 305 305 ((( 306 -**Screencast** - finalstate of editor366 +**Screencast** - current state of editor 307 307 \\(% style="color:#000000" %)"""Simple network model using PyNN""" 308 308 \\import pyNN.(% style="color:#e74c3c" %)neuron(% style="color:#000000" %) as sim(%%) 309 309 (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) ... ... @@ -346,24 +346,22 @@ 346 346 (% class="wikigeneratedid" %) 347 347 As you would hope, NEST and NEURON give essentially identical results. 348 348 349 -(% class="box successmessage" %) 350 -((( 351 -**Slide** recap of learning objectives 352 -))) 409 +(% class="wikigeneratedid" id="HSummary28Inthistutorial2CyouhavelearnedtodoX202629" %) 410 +(% class="small" %)**Summary (In this tutorial, you have learned to do X…)** 353 353 354 - That is the end of this tutorial, in which I've demonstrated how to build a simple network using PyNN, and to simulate it using two different simulators, NEST and NEURON.412 +. 355 355 356 -Of course, PyNN allows you to create much more complex networks than this, with more realistic neuron models, synaptic plasticity, spatial structure, and so on. You can also use other simulators, such as Brian or SpiNNaker, and you can run simulations in parallel on clusters or supercomputers. 414 +(% class="wikigeneratedid" id="HAcknowledgementsifappropriate" %) 415 +(% class="small" %)**Acknowledgements if appropriate** 357 357 358 - We will be releasing a series of tutorials, throughout the rest of 2021 and 2022, to introduce these more advanced features of PyNN, so keep an eye on the EBRAINS website.417 +. 359 359 360 -(% class="box successmessage" %) 361 -((( 362 -**Slide** acknowledgements, contact information 363 -))) 419 +(% class="wikigeneratedid" id="HReferencestowebsites28Formoreinformation2Cvisitusat202629" %) 420 +(% class="small" %)**References to websites (For more information, visit us at…)** 364 364 365 -(% class="wikigeneratedid" %) 366 -PyNN has been developed by many different people, with financial support from several different organisations. I'd like to mention in particular the CNRS and the European Commission, through the FACETS, BrainScaleS and Human Brain Project grants. 422 +. 367 367 368 -(% class="wikigeneratedid" %) 369 -For more information visit neuralensemble.org/PyNN. If you have questions you can contact us through the PyNN Github project, the NeuralEnsemble forum, EBRAINS support, or the EBRAINS Community. 424 +(% class="wikigeneratedid" id="HContactinformation28Forquestions2Ccontactusat202629" %) 425 +(% class="small" %)**Contact information (For questions, contact us at…)** 426 + 427 +.