Warning:  Due to planned infrastructure maintenance, the EBRAINS Wiki and EBRAINS Support system will be unavailable for up to three days starting Monday, 14 July. During this period, both services will be inaccessible, and any emails sent to the support address will not be received.

Attention: We are currently experiencing some issues with the EBRAINS Drive. Please bear with us as we fix this issue. We apologise for any inconvenience caused.


Last modified by adavison on 2022/10/04 13:55

From version 15.1
edited by adavison
on 2021/09/30 15:30
Change comment: There is no comment for this version
To version 14.1
edited by adavison
on 2021/09/30 15:27
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -142,11 +142,17 @@
142 142  
143 143  (% class="box infomessage" %)
144 144  (((
145 -**Screencast** - changes in editor
146 -
147 -
148 -**...**
149 -(% style="color:#000000" %)Figure(
145 +**Screencast** - current state of editor
146 +\\(% style="color:#000000" %)"""Simple network model using PyNN"""
147 +\\import pyNN.nest as sim(%%)
148 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
149 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
150 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
151 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")
152 +population1.record("v")
153 +sim.run(100.0)(%%)
154 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
155 +Figure(
150 150   Panel(
151 151   data_v[:, (% style="color:#e74c3c" %)0:5(% style="color:#000000" %)],
152 152   xticks=True, xlabel="Time (ms)",
... ... @@ -162,7 +162,7 @@
162 162  
163 163  (% class="box infomessage" %)
164 164  (((
165 -**Screencast** - changes in editor
171 +**Screencast** - current state of editor
166 166  \\(% style="color:#000000" %)"""Simple network model using PyNN"""
167 167  \\import pyNN.nest as sim(%%)
168 168  (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
... ... @@ -173,12 +173,11 @@
173 173   v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
174 174   v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
175 175  (% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
176 -
177 -
178 -**...**
179 -
180 -
181 -(% style="color:#000000" %)Figure(
182 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")
183 +population1.record("v")
184 +sim.run(100.0)(%%)
185 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
186 +Figure(
182 182   Panel(
183 183   data_v[:, 0:5],
184 184   xticks=True, xlabel="Time (ms)",
... ... @@ -202,8 +202,17 @@
202 202  
203 203  (% class="box infomessage" %)
204 204  (((
205 -**Screencast** - changes in editor
206 -\\**...**
210 +**Screencast** - current state of editor
211 +\\(% style="color:#000000" %)"""Simple network model using PyNN"""
212 +\\import pyNN.nest as sim(%%)
213 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
214 +(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%)
215 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
216 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
217 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}),
218 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
219 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
220 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
207 207  (% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
208 208  (% style="color:#e74c3c" %)population2 = sim.Population(100, cell_type, label="Population 2")
209 209  population2.set(i_offset=0)(%%)
... ... @@ -210,7 +210,16 @@
210 210  (% style="color:#000000" %)population1.record("v")(%%)
211 211  (% style="color:#e74c3c" %)population2.record("v")(%%)
212 212  (% style="color:#000000" %)sim.run(100.0)(%%)
213 -**...**
227 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
228 +Figure(
229 + Panel(
230 + data_v[:, 0:5],
231 + xticks=True, xlabel="Time (ms)",
232 + yticks=True, ylabel="Membrane potential (mV)"
233 + ),
234 + title="Response of first five neurons with heterogeneous parameters",
235 + annotations="Simulated with NEST"
236 +).show()
214 214  )))
215 215  
216 216  Now we want to create synaptic connections between the neurons in Population 1 and those in Population 2. There are lots of different ways these could be connected.
... ... @@ -258,16 +258,36 @@
258 258  
259 259  (% class="box infomessage" %)
260 260  (((
261 -**Screencast** - changes in editor
262 -
263 -
264 -**...**
265 -(% style="color:#000000" %)population2.record("v")(%%)
284 +**Screencast** - current state of editor
285 +\\(% style="color:#000000" %)"""Simple network model using PyNN"""
286 +\\import pyNN.nest as sim(%%)
287 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
288 +(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%)
289 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
290 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
291 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}),
292 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
293 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
294 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
295 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
296 +(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2")
297 +population2.set(i_offset=0)
298 +population1.record("v")
299 +population2.record("v")(%%)
266 266  (% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5)
267 267  synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5)
268 268  connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%)
269 269  (% style="color:#000000" %)sim.run(100.0)(%%)
270 -**...**
304 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
305 +Figure(
306 + Panel(
307 + data_v[:, 0:5],
308 + xticks=True, xlabel="Time (ms)",
309 + yticks=True, ylabel="Membrane potential (mV)"
310 + ),
311 + title="Response of first five neurons with heterogeneous parameters",
312 + annotations="Simulated with NEST"
313 +).show()
271 271  )))
272 272  
273 273  (% class="wikigeneratedid" %)
... ... @@ -275,8 +275,25 @@
275 275  
276 276  (% class="box infomessage" %)
277 277  (((
278 -**Screencast** - changes in editor
279 -\\**...**
321 +**Screencast** - current state of editor
322 +\\(% style="color:#000000" %)"""Simple network model using PyNN"""
323 +\\import pyNN.nest as sim(%%)
324 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
325 +(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%)
326 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
327 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
328 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}),
329 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
330 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
331 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
332 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
333 +(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2")
334 +population2.set(i_offset=0)
335 +population1.record("v")
336 +population2.record("v")(%%)
337 +(% style="color:#000000" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5)
338 +synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5)
339 +connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%)
280 280  (% style="color:#000000" %)sim.run(100.0)(%%)
281 281  (% style="color:#e74c3c" %)data1_v(% style="color:#000000" %) = population1.get_data().segments[0].filter(name='v')[0](%%)
282 282  (% style="color:#e74c3c" %)data2_v = population2.get_data().segments[0].filter(name='v')[0](%%)
... ... @@ -303,7 +303,7 @@
303 303  
304 304  (% class="box infomessage" %)
305 305  (((
306 -**Screencast** - final state of editor
366 +**Screencast** - current state of editor
307 307  \\(% style="color:#000000" %)"""Simple network model using PyNN"""
308 308  \\import pyNN.(% style="color:#e74c3c" %)neuron(% style="color:#000000" %) as sim(%%)
309 309  (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)