Last modified by adavison on 2022/10/04 13:55

From version 16.1
edited by annedevismes
on 2021/10/18 10:26
Change comment: There is no comment for this version
To version 14.1
edited by adavison
on 2021/09/30 15:27
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.annedevismes
1 +XWiki.adavison
Content
... ... @@ -9,11 +9,11 @@
9 9  
10 10  == Audience ==
11 11  
12 -This tutorial is intended for people with at least a basic knowledge of neuroscience (high-school level or above) and basic familiarity with the Python programming language. It should also be helpful for people who already have advanced knowledge of neuroscience and neural simulation, who simply wish to learn how to use PyNN and how it differs from other simulation tools they know.
12 +This tutorial is intended for people with at least a basic knowledge of neuroscience (high school level or above) and basic familiarity with the Python programming language. It should also be helpful for people who already have advanced knowledge of neuroscience and neural simulation, who simply wish to learn how to use PyNN, and how it differs from other simulation tools they know.
13 13  
14 14  == Prerequisites ==
15 15  
16 -To follow this tutorial, you need a basic knowledge of neuroscience (high-school level or greater), basic familiarity with the Python programming language, and either a computer with PyNN, NEST, NEURON, and Brian 2 installed or an EBRAINS account and basic familiarity with Jupyter notebooks. If you don't have these tools installed, see one of our previous tutorials which guide you through the installation.
16 +To follow this tutorial, you need a basic knowledge of neuroscience (high-school level or greater), basic familiarity with the Python programming language, and either a computer with PyNN, NEST, NEURON and Brian 2 installed, or an EBRAINS account and basic familiarity with Jupyter notebooks. If you don't have these tools installed, see one of our previous tutorials which guide you through the installation.
17 17  
18 18  == Format ==
19 19  
... ... @@ -66,13 +66,13 @@
66 66  **Screencast** - blank document in editor
67 67  )))
68 68  
69 -In this video, you'll see my editor on the left and my terminal and my file browser on the right. I'll be writing code in the editor and then running my scripts in the terminal. You're welcome to follow along~-~--you can pause the video at any time if I'm going too fast~-~--or you can just watch.
69 +In this video, you'll see my editor on the left, and on the right my terminal and my file browser. I'll be writing code in the editor, and then running my scripts in the terminal. You're welcome to follow along~-~--you can pause the video at any time if I'm going too fast~-~--or you can just watch.
70 70  
71 -Let's start by writing a docstring "Simple network model using PyNN".
71 +Let's start by writing a docstring, "Simple network model using PyNN".
72 72  
73 -For now, we're going to use the NEST simulator to simulate this model; so, we import the PyNN-for-NEST module.
73 +For now, we're going to use the NEST simulator to simulate this model, so we import the PyNN-for-NEST module.
74 74  
75 -Like with any numerical model, we need to break time down into small steps; so let's set that up with steps of 0.1 milliseconds.
75 +Like with any numerical model, we need to break time down into small steps, so let's set that up with steps of 0.1 milliseconds.
76 76  
77 77  (% class="box infomessage" %)
78 78  (((
... ... @@ -95,7 +95,7 @@
95 95  (% style="color:#e74c3c" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)
96 96  )))
97 97  
98 -Let's create 100 of these neurons; then, we're going to record the membrane voltage and run a simulation for 100 milliseconds.
98 +Let's create 100 of these neurons, then we're going to record the membrane voltage, and run a simulation for 100 milliseconds.
99 99  
100 100  (% class="box infomessage" %)
101 101  (((
... ... @@ -136,17 +136,23 @@
136 136  \\**Run script in terminal, show figure**
137 137  )))
138 138  
139 -As you'd expect, the bias current causes the membrane voltage to increase until it reaches threshold~-~--it doesn't increase in a straight line because it's a //leaky// integrate-and-fire neuron~-~--then, once it hits the threshold, the voltage is reset and then stays at the same level for a short time~-~--this is the refractory period~-~--before it starts to increase again.
139 +As you'd expect, the bias current causes the membrane voltage to increase until it reaches threshold~-~--it doesn't increase in a straight line because it's a //leaky// integrate-and-fire neuron~-~--then once it hits the threshold the voltage is reset, and then stays at the same level for a short time~-~--this is the refractory period~-~--before it starts to increase again.
140 140  
141 -Now, all 100 neurons in our population are identical; so, if we plotted the first neuron, the second neuron, ..., we'd get the same trace.
141 +Now, all 100 neurons in our population are identical, so if we plotted the first neuron, the second neuron, ..., we'd get the same trace.
142 142  
143 143  (% class="box infomessage" %)
144 144  (((
145 -**Screencast** - changes in editor
146 -
147 -
148 -**...**
149 -(% style="color:#000000" %)Figure(
145 +**Screencast** - current state of editor
146 +\\(% style="color:#000000" %)"""Simple network model using PyNN"""
147 +\\import pyNN.nest as sim(%%)
148 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
149 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
150 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
151 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")
152 +population1.record("v")
153 +sim.run(100.0)(%%)
154 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
155 +Figure(
150 150   Panel(
151 151   data_v[:, (% style="color:#e74c3c" %)0:5(% style="color:#000000" %)],
152 152   xticks=True, xlabel="Time (ms)",
... ... @@ -158,11 +158,11 @@
158 158  \\**Run script in terminal, show figure**
159 159  )))
160 160  
161 -Let's change that. In nature, every neuron is a little bit different; so, let's set the resting membrane potential and the spike threshold randomly from a Gaussian distribution.
167 +Let's change that. In nature every neuron is a little bit different, so let's set the resting membrane potential and the spike threshold randomly from a Gaussian distribution.
162 162  
163 163  (% class="box infomessage" %)
164 164  (((
165 -**Screencast** - changes in editor
171 +**Screencast** - current state of editor
166 166  \\(% style="color:#000000" %)"""Simple network model using PyNN"""
167 167  \\import pyNN.nest as sim(%%)
168 168  (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
... ... @@ -173,12 +173,11 @@
173 173   v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
174 174   v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
175 175  (% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
176 -
177 -
178 -**...**
179 -
180 -
181 -(% style="color:#000000" %)Figure(
182 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")
183 +population1.record("v")
184 +sim.run(100.0)(%%)
185 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
186 +Figure(
182 182   Panel(
183 183   data_v[:, 0:5],
184 184   xticks=True, xlabel="Time (ms)",
... ... @@ -190,20 +190,29 @@
190 190  \\**Run script in terminal, show figure**
191 191  )))
192 192  
193 -Now, if we run our simulation again, we can see the effect of this heterogeneity in the neuron population.
198 +Now if we run our simulation again, we can see the effect of this heterogeneity in the neuron population.
194 194  
195 195  (% class="box successmessage" %)
196 196  (((
197 -**Slide** showing addition of second population and of connections between them
202 +**Slide** showing addition of second population, and of connections between them
198 198  )))
199 199  
200 200  (% class="wikigeneratedid" %)
201 -So far, we have a population of neurons, but there are no connections between them, we don't have a network. Let's add a second population of the same size as the first, but we'll set the offset current to zero, so they don't fire action potentials spontaneously.
206 +So far we have a population of neurons, but there are no connections between them, we don't have a network. Let's add a second population of the same size as the first, but we'll set the offset current to zero, so they don't fire action potentials spontaneously.
202 202  
203 203  (% class="box infomessage" %)
204 204  (((
205 -**Screencast** - changes in editor
206 -\\**...**
210 +**Screencast** - current state of editor
211 +\\(% style="color:#000000" %)"""Simple network model using PyNN"""
212 +\\import pyNN.nest as sim(%%)
213 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
214 +(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%)
215 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
216 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
217 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}),
218 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
219 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
220 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
207 207  (% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
208 208  (% style="color:#e74c3c" %)population2 = sim.Population(100, cell_type, label="Population 2")
209 209  population2.set(i_offset=0)(%%)
... ... @@ -210,10 +210,19 @@
210 210  (% style="color:#000000" %)population1.record("v")(%%)
211 211  (% style="color:#e74c3c" %)population2.record("v")(%%)
212 212  (% style="color:#000000" %)sim.run(100.0)(%%)
213 -**...**
227 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
228 +Figure(
229 + Panel(
230 + data_v[:, 0:5],
231 + xticks=True, xlabel="Time (ms)",
232 + yticks=True, ylabel="Membrane potential (mV)"
233 + ),
234 + title="Response of first five neurons with heterogeneous parameters",
235 + annotations="Simulated with NEST"
236 +).show()
214 214  )))
215 215  
216 -Now, we want to create synaptic connections between the neurons in Population 1 and those in Population 2. There are lots of different ways these could be connected.
239 +Now we want to create synaptic connections between the neurons in Population 1 and those in Population 2. There are lots of different ways these could be connected.
217 217  
218 218  (% class="box successmessage" %)
219 219  (((
... ... @@ -254,20 +254,40 @@
254 254  )))
255 255  
256 256  (% class="wikigeneratedid" %)
257 -In PyNN, we call a group of connections between two populations a _Projection_. To create a Projection, we need to specify the presynaptic population, the postsynaptic population, the connection algorithm, and the synapse model. Here, we're using the simplest synapse model available in PyNN, for which the synaptic weight is constant over time; there is no plasticity.
280 +In PyNN, we call a group of connections between two populations a _Projection_. To create a Projection, we need to specify the presynaptic population, the postsynaptic population, the connection algorithm, and the synapse model. Here we're using the simplest synapse model available in PyNN, for which the synaptic weight is constant over time, there is no plasticity.
258 258  
259 259  (% class="box infomessage" %)
260 260  (((
261 -**Screencast** - changes in editor
262 -
263 -
264 -**...**
265 -(% style="color:#000000" %)population2.record("v")(%%)
284 +**Screencast** - current state of editor
285 +\\(% style="color:#000000" %)"""Simple network model using PyNN"""
286 +\\import pyNN.nest as sim(%%)
287 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
288 +(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%)
289 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
290 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
291 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}),
292 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
293 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
294 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
295 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
296 +(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2")
297 +population2.set(i_offset=0)
298 +population1.record("v")
299 +population2.record("v")(%%)
266 266  (% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5)
267 267  synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5)
268 268  connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%)
269 269  (% style="color:#000000" %)sim.run(100.0)(%%)
270 -**...**
304 +(% style="color:#000000" %)data_v = population1.get_data().segments[0].filter(name='v')[0]
305 +Figure(
306 + Panel(
307 + data_v[:, 0:5],
308 + xticks=True, xlabel="Time (ms)",
309 + yticks=True, ylabel="Membrane potential (mV)"
310 + ),
311 + title="Response of first five neurons with heterogeneous parameters",
312 + annotations="Simulated with NEST"
313 +).show()
271 271  )))
272 272  
273 273  (% class="wikigeneratedid" %)
... ... @@ -275,8 +275,25 @@
275 275  
276 276  (% class="box infomessage" %)
277 277  (((
278 -**Screencast** - changes in editor
279 -\\**...**
321 +**Screencast** - current state of editor
322 +\\(% style="color:#000000" %)"""Simple network model using PyNN"""
323 +\\import pyNN.nest as sim(%%)
324 +(% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
325 +(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%)
326 +(% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
327 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
328 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}),
329 + v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
330 + v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
331 +(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
332 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
333 +(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2")
334 +population2.set(i_offset=0)
335 +population1.record("v")
336 +population2.record("v")(%%)
337 +(% style="color:#000000" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5)
338 +synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5)
339 +connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%)
280 280  (% style="color:#000000" %)sim.run(100.0)(%%)
281 281  (% style="color:#e74c3c" %)data1_v(% style="color:#000000" %) = population1.get_data().segments[0].filter(name='v')[0](%%)
282 282  (% style="color:#e74c3c" %)data2_v = population2.get_data().segments[0].filter(name='v')[0](%%)
... ... @@ -299,11 +299,11 @@
299 299  )))
300 300  
301 301  (% class="wikigeneratedid" %)
302 -and there we have it, our simple neuronal network of integrate-and-fire neurons, written in PyNN, simulated with NEST. If you prefer to use the NEURON simulator, PyNN makes this very simple: we import the PyNN-for-NEURON module instead.
362 +and there we have it, our simple neuronal network of integrate-and-fire neurons, written in PyNN, simulated with NEST. If you prefer to use the NEURON simulator, PyNN makes this very simple, we import the PyNN-for-NEURON module instead.
303 303  
304 304  (% class="box infomessage" %)
305 305  (((
306 -**Screencast** - final state of editor
366 +**Screencast** - current state of editor
307 307  \\(% style="color:#000000" %)"""Simple network model using PyNN"""
308 308  \\import pyNN.(% style="color:#e74c3c" %)neuron(% style="color:#000000" %) as sim(%%)
309 309  (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
... ... @@ -351,7 +351,7 @@
351 351  **Slide** recap of learning objectives
352 352  )))
353 353  
354 -That is the end of this tutorial, in which I've demonstrated how to build a simple network using PyNN and to simulate it using two different simulators, NEST and NEURON.
414 +That is the end of this tutorial, in which I've demonstrated how to build a simple network using PyNN, and to simulate it using two different simulators, NEST and NEURON.
355 355  
356 356  Of course, PyNN allows you to create much more complex networks than this, with more realistic neuron models, synaptic plasticity, spatial structure, and so on. You can also use other simulators, such as Brian or SpiNNaker, and you can run simulations in parallel on clusters or supercomputers.
357 357  
... ... @@ -363,7 +363,7 @@
363 363  )))
364 364  
365 365  (% class="wikigeneratedid" %)
366 -PyNN has been developed by many different people, with financial support from several organisations. I'd like to mention in particular the CNRS and the European Commission, through the FACETS, BrainScaleS, and Human Brain Project grants.
426 +PyNN has been developed by many different people, with financial support from several different organisations. I'd like to mention in particular the CNRS and the European Commission, through the FACETS, BrainScaleS and Human Brain Project grants.
367 367  
368 368  (% class="wikigeneratedid" %)
369 -For more information, visit neuralensemble.org/PyNN. If you have questions you can contact us through the PyNN Github project, the NeuralEnsemble forum, EBRAINS support, or the EBRAINS Community.
429 +For more information visit neuralensemble.org/PyNN. If you have questions you can contact us through the PyNN Github project, the NeuralEnsemble forum, EBRAINS support, or the EBRAINS Community.