Changes for page 03. Building and simulating a simple model
Last modified by adavison on 2022/10/04 13:55
From version 16.1
edited by annedevismes
on 2021/10/18 10:26
on 2021/10/18 10:26
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki.a nnedevismes1 +XWiki.shailesh - Content
-
... ... @@ -92,7 +92,7 @@ 92 92 \\(% style="color:#000000" %)"""Simple network model using PyNN""" 93 93 \\import pyNN.nest as sim 94 94 sim.setup(timestep=0.1)(%%) 95 -(% style="color:#e74c3c" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1) 95 +(% style="color:#e74c3c" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset=0.1) 96 96 ))) 97 97 98 98 Let's create 100 of these neurons; then, we're going to record the membrane voltage and run a simulation for 100 milliseconds. ... ... @@ -103,7 +103,7 @@ 103 103 \\(% style="color:#000000" %)"""Simple network model using PyNN""" 104 104 \\import pyNN.nest as sim 105 105 sim.setup(timestep=0.1)(%%) 106 -(% style="color:#000000" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 106 +(% style="color:#000000" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 107 107 (% style="color:#e74c3c" %)population1 = sim.Population(100, cell_type, label="Population 1") 108 108 population1.record("v") 109 109 sim.run(100.0)(%%) ... ... @@ -119,7 +119,7 @@ 119 119 \\import pyNN.nest as sim(%%) 120 120 (% style="color:#e74c3c" %)from pyNN.utility.plotting import Figure, Panel(%%) 121 121 (% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 122 -(% style="color:#000000" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 122 +(% style="color:#000000" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 123 123 (% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1") 124 124 population1.record("v") 125 125 sim.run(100.0)(%%) ... ... @@ -172,7 +172,7 @@ 172 172 (% style="color:#e74c3c" %) v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), 173 173 v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 174 174 v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 175 -(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 175 +(% style="color:#000000" %) tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 176 176 177 177 178 178 **...** ... ... @@ -313,7 +313,7 @@ 313 313 (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), 314 314 v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}), 315 315 v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%) 316 -(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 316 +(% style="color:#000000" %) tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 317 317 (% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 318 318 (% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2") 319 319 population2.set(i_offset=0)