Changes for page 03. Building and simulating a simple model
Last modified by adavison on 2022/10/04 13:55
From version 16.1
edited by annedevismes
on 2021/10/18 10:26
on 2021/10/18 10:26
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki.a nnedevismes1 +XWiki.adavison - Content
-
... ... @@ -92,7 +92,7 @@ 92 92 \\(% style="color:#000000" %)"""Simple network model using PyNN""" 93 93 \\import pyNN.nest as sim 94 94 sim.setup(timestep=0.1)(%%) 95 -(% style="color:#e74c3c" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1) 95 +(% style="color:#e74c3c" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset=0.1) 96 96 ))) 97 97 98 98 Let's create 100 of these neurons; then, we're going to record the membrane voltage and run a simulation for 100 milliseconds. ... ... @@ -103,7 +103,7 @@ 103 103 \\(% style="color:#000000" %)"""Simple network model using PyNN""" 104 104 \\import pyNN.nest as sim 105 105 sim.setup(timestep=0.1)(%%) 106 -(% style="color:#000000" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 106 +(% style="color:#000000" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 107 107 (% style="color:#e74c3c" %)population1 = sim.Population(100, cell_type, label="Population 1") 108 108 population1.record("v") 109 109 sim.run(100.0)(%%) ... ... @@ -119,7 +119,7 @@ 119 119 \\import pyNN.nest as sim(%%) 120 120 (% style="color:#e74c3c" %)from pyNN.utility.plotting import Figure, Panel(%%) 121 121 (% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 122 -(% style="color:#000000" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 122 +(% style="color:#000000" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 123 123 (% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1") 124 124 population1.record("v") 125 125 sim.run(100.0)(%%) ... ... @@ -169,10 +169,10 @@ 169 169 (% style="color:#e74c3c" %)from pyNN.random import RandomDistribution(%%) 170 170 (% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 171 171 (% style="color:#000000" %)cell_type = sim.IF_curr_exp( 172 - (% style="color:#e74c3c" %) v_rest=RandomDistribution('normal', {'mu':-65.0,'sigma':1.0}),173 - v_thresh=RandomDistribution('normal', {'mu':-55.0,'sigma':1.0}),174 - v_reset=RandomDistribution('normal', {'mu':-65.0,'sigma':1.0}), (%%)175 -(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 172 + (% style="color:#e74c3c" %) v_rest=RandomDistribution('normal', mu=-65.0, sigma=1.0), 173 + v_thresh=RandomDistribution('normal', mu=-55.0, sigma=1.0), 174 + v_reset=RandomDistribution('normal', mu=-65.0, sigma=1.0), (%%) 175 +(% style="color:#000000" %) tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 176 176 177 177 178 178 **...** ... ... @@ -263,7 +263,7 @@ 263 263 264 264 **...** 265 265 (% style="color:#000000" %)population2.record("v")(%%) 266 -(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5) 266 +(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p_connect=0.5) 267 267 synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 268 268 connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 269 269 (% style="color:#000000" %)sim.run(100.0)(%%) ... ... @@ -289,7 +289,7 @@ 289 289 (% style="color:#e74c3c" %)Panel( 290 290 data2_v[:, 0:5], 291 291 xticks=True, xlabel="Time (ms)", 292 - yticks=True "292 + yticks=True 293 293 ),(%%) 294 294 (% style="color:#000000" %) title="Response of (% style="color:#e74c3c" %)simple network(% style="color:#000000" %)", 295 295 annotations="Simulated with NEST" ... ... @@ -310,16 +310,16 @@ 310 310 (% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 311 311 (% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 312 312 (% style="color:#000000" %)cell_type = sim.IF_curr_exp( 313 - (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu':-65.0,'sigma':1.0}),314 - v_thresh=RandomDistribution('normal', {'mu':-55.0,'sigma':1.0}),315 - v_reset=RandomDistribution('normal', {'mu':-65.0,'sigma':1.0}), (%%)316 -(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 313 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', mu=-65.0, sigma=1.0), 314 + v_thresh=RandomDistribution('normal', mu=-55.0, sigma=1.0), 315 + v_reset=RandomDistribution('normal', mu=-65.0, sigma=1.0), (%%) 316 +(% style="color:#000000" %) tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 317 317 (% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%) 318 318 (% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2") 319 319 population2.set(i_offset=0) 320 320 population1.record("v") 321 321 population2.record("v")(%%) 322 -(% style="color:#000000" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5) 322 +(% style="color:#000000" %)connection_algorithm = sim.FixedProbabilityConnector(p_connect=0.5) 323 323 synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 324 324 connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 325 325 (% style="color:#000000" %)sim.run(100.0)(%%) ... ... @@ -334,7 +334,7 @@ 334 334 Panel( 335 335 data2_v[:, 0:5], 336 336 xticks=True, xlabel="Time (ms)", 337 - yticks=True "337 + yticks=True 338 338 ),(%%) 339 339 (% style="color:#000000" %) title="Response of simple network", 340 340 annotations="Simulated with (% style="color:#e74c3c" %)NEURON(% style="color:#000000" %)"