Warning:  Due to planned infrastructure maintenance, the EBRAINS Wiki and EBRAINS Support system will be unavailable for up to three days starting Monday, 14 July. During this period, both services will be inaccessible, and any emails sent to the support address will not be received.

Attention: We are currently experiencing some issues with the EBRAINS Drive. Please bear with us as we fix this issue. We apologise for any inconvenience caused.


Last modified by adavison on 2022/10/04 13:55

From version 16.1
edited by annedevismes
on 2021/10/18 10:26
Change comment: There is no comment for this version
To version 20.1
edited by adavison
on 2021/12/01 15:21
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.annedevismes
1 +XWiki.adavison
Content
... ... @@ -92,7 +92,7 @@
92 92  \\(% style="color:#000000" %)"""Simple network model using PyNN"""
93 93  \\import pyNN.nest as sim
94 94  sim.setup(timestep=0.1)(%%)
95 -(% style="color:#e74c3c" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)
95 +(% style="color:#e74c3c" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)
96 96  )))
97 97  
98 98  Let's create 100 of these neurons; then, we're going to record the membrane voltage and run a simulation for 100 milliseconds.
... ... @@ -103,7 +103,7 @@
103 103  \\(% style="color:#000000" %)"""Simple network model using PyNN"""
104 104  \\import pyNN.nest as sim
105 105  sim.setup(timestep=0.1)(%%)
106 -(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
106 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
107 107  (% style="color:#e74c3c" %)population1 = sim.Population(100, cell_type, label="Population 1")
108 108  population1.record("v")
109 109  sim.run(100.0)(%%)
... ... @@ -119,7 +119,7 @@
119 119  \\import pyNN.nest as sim(%%)
120 120  (% style="color:#e74c3c" %)from pyNN.utility.plotting import Figure, Panel(%%)
121 121  (% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
122 -(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
122 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
123 123  (% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")
124 124  population1.record("v")
125 125  sim.run(100.0)(%%)
... ... @@ -169,10 +169,10 @@
169 169  (% style="color:#e74c3c" %)from pyNN.random import RandomDistribution(%%)
170 170  (% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
171 171  (% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
172 - (% style="color:#e74c3c" %) v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}),
173 - v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
174 - v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
175 -(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
172 + (% style="color:#e74c3c" %) v_rest=RandomDistribution('normal', mu=-65.0, sigma=1.0),
173 + v_thresh=RandomDistribution('normal', mu=-55.0, sigma=1.0),
174 + v_reset=RandomDistribution('normal', mu=-65.0, sigma=1.0), (%%)
175 +(% style="color:#000000" %) tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
176 176  
177 177  
178 178  **...**
... ... @@ -263,7 +263,7 @@
263 263  
264 264  **...**
265 265  (% style="color:#000000" %)population2.record("v")(%%)
266 -(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5)
266 +(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p_connect=0.5)
267 267  synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5)
268 268  connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%)
269 269  (% style="color:#000000" %)sim.run(100.0)(%%)
... ... @@ -289,7 +289,7 @@
289 289   (% style="color:#e74c3c" %)Panel(
290 290   data2_v[:, 0:5],
291 291   xticks=True, xlabel="Time (ms)",
292 - yticks=True"
292 + yticks=True
293 293   ),(%%)
294 294  (% style="color:#000000" %) title="Response of (% style="color:#e74c3c" %)simple network(% style="color:#000000" %)",
295 295   annotations="Simulated with NEST"
... ... @@ -310,16 +310,16 @@
310 310  (% style="color:#000000" %)from pyNN.random import RandomDistribution(%%)
311 311  (% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
312 312  (% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
313 - (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}),
314 - v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
315 - v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
316 -(% style="color:#000000" %) t_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
313 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', mu=-65.0, sigma=1.0),
314 + v_thresh=RandomDistribution('normal', mu=-55.0, sigma=1.0),
315 + v_reset=RandomDistribution('normal', mu=-65.0, sigma=1.0), (%%)
316 +(% style="color:#000000" %) tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
317 317  (% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
318 318  (% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2")
319 319  population2.set(i_offset=0)
320 320  population1.record("v")
321 321  population2.record("v")(%%)
322 -(% style="color:#000000" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5)
322 +(% style="color:#000000" %)connection_algorithm = sim.FixedProbabilityConnector(p_connect=0.5)
323 323  synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5)
324 324  connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%)
325 325  (% style="color:#000000" %)sim.run(100.0)(%%)
... ... @@ -334,7 +334,7 @@
334 334   Panel(
335 335   data2_v[:, 0:5],
336 336   xticks=True, xlabel="Time (ms)",
337 - yticks=True"
337 + yticks=True
338 338   ),(%%)
339 339  (% style="color:#000000" %) title="Response of simple network",
340 340   annotations="Simulated with (% style="color:#e74c3c" %)NEURON(% style="color:#000000" %)"