Warning:  Due to planned infrastructure maintenance, the EBRAINS Wiki and EBRAINS Support system will be unavailable for up to three days starting Monday, 14 July. During this period, both services will be inaccessible, and any emails sent to the support address will not be received.

Attention: We are currently experiencing some issues with the EBRAINS Drive. Please bear with us as we fix this issue. We apologise for any inconvenience caused.


Last modified by adavison on 2022/10/04 13:55

From version 18.1
edited by adavison
on 2021/12/01 13:07
Change comment: There is no comment for this version
To version 20.1
edited by adavison
on 2021/12/01 15:21
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -169,9 +169,9 @@
169 169  (% style="color:#e74c3c" %)from pyNN.random import RandomDistribution(%%)
170 170  (% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
171 171  (% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
172 - (% style="color:#e74c3c" %) v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}),
173 - v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
174 - v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
172 + (% style="color:#e74c3c" %) v_rest=RandomDistribution('normal', mu=-65.0, sigma=1.0),
173 + v_thresh=RandomDistribution('normal', mu=-55.0, sigma=1.0),
174 + v_reset=RandomDistribution('normal', mu=-65.0, sigma=1.0), (%%)
175 175  (% style="color:#000000" %) tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
176 176  
177 177  
... ... @@ -263,7 +263,7 @@
263 263  
264 264  **...**
265 265  (% style="color:#000000" %)population2.record("v")(%%)
266 -(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5)
266 +(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p_connect=0.5)
267 267  synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5)
268 268  connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%)
269 269  (% style="color:#000000" %)sim.run(100.0)(%%)
... ... @@ -310,9 +310,9 @@
310 310  (% style="color:#000000" %)from pyNN.random import RandomDistribution(%%)
311 311  (% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
312 312  (% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
313 - (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}),
314 - v_thresh=RandomDistribution('normal', {'mu': -55.0, 'sigma': 1.0}),
315 - v_reset=RandomDistribution('normal', {'mu': -65.0, 'sigma': 1.0}), (%%)
313 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', mu=-65.0, sigma=1.0),
314 + v_thresh=RandomDistribution('normal', mu=-55.0, sigma=1.0),
315 + v_reset=RandomDistribution('normal', mu=-65.0, sigma=1.0), (%%)
316 316  (% style="color:#000000" %) tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
317 317  (% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
318 318  (% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2")
... ... @@ -319,7 +319,7 @@
319 319  population2.set(i_offset=0)
320 320  population1.record("v")
321 321  population2.record("v")(%%)
322 -(% style="color:#000000" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5)
322 +(% style="color:#000000" %)connection_algorithm = sim.FixedProbabilityConnector(p_connect=0.5)
323 323  synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5)
324 324  connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%)
325 325  (% style="color:#000000" %)sim.run(100.0)(%%)