Changes for page 03. Building and simulating a simple model
Last modified by adavison on 2022/10/04 13:55
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki.a davison1 +XWiki.shailesh - Content
-
... ... @@ -92,7 +92,7 @@ 92 92 \\(% style="color:#000000" %)"""Simple network model using PyNN""" 93 93 \\import pyNN.nest as sim 94 94 sim.setup(timestep=0.1)(%%) 95 -(% style="color:#e74c3c" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset= 0.1)95 +(% style="color:#e74c3c" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset=1.1) 96 96 ))) 97 97 98 98 Let's create 100 of these neurons; then, we're going to record the membrane voltage and run a simulation for 100 milliseconds. ... ... @@ -103,7 +103,7 @@ 103 103 \\(% style="color:#000000" %)"""Simple network model using PyNN""" 104 104 \\import pyNN.nest as sim 105 105 sim.setup(timestep=0.1)(%%) 106 -(% style="color:#000000" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset= 0.1)(%%)106 +(% style="color:#000000" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset=1.1)(%%) 107 107 (% style="color:#e74c3c" %)population1 = sim.Population(100, cell_type, label="Population 1") 108 108 population1.record("v") 109 109 sim.run(100.0)(%%) ... ... @@ -119,7 +119,7 @@ 119 119 \\import pyNN.nest as sim(%%) 120 120 (% style="color:#e74c3c" %)from pyNN.utility.plotting import Figure, Panel(%%) 121 121 (% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 122 -(% style="color:#000000" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset= 0.1)(%%)122 +(% style="color:#000000" %)cell_type = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset=1.1)(%%) 123 123 (% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1") 124 124 population1.record("v") 125 125 sim.run(100.0)(%%) ... ... @@ -166,14 +166,14 @@ 166 166 \\(% style="color:#000000" %)"""Simple network model using PyNN""" 167 167 \\import pyNN.nest as sim(%%) 168 168 (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 169 -(% style="color:#e74c3c" %)from pyNN.random import RandomDistribution(%%) 169 +(% style="color:#e74c3c" %)from pyNN.random import RandomDistribution, NumpyRNG(%%) 170 170 (% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 171 +(% style="color:#e74c3c" %)rng = NumpyRNG(seed=1)(%%) 171 171 (% style="color:#000000" %)cell_type = sim.IF_curr_exp( 172 - (% style="color:#e74c3c" %) v_rest=RandomDistribution('normal', mu=-65.0, sigma=1.0), 173 - v_thresh=RandomDistribution('normal', mu=-55.0, sigma=1.0), 174 - v_reset=RandomDistribution('normal', mu=-65.0, sigma=1.0), (%%) 175 -(% style="color:#000000" %) tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%) 176 - 173 + (% style="color:#e74c3c" %) v_rest=RandomDistribution('normal', mu=-65.0, sigma=1.0, rng=rng), 174 + v_thresh=RandomDistribution('normal', mu=-55.0, sigma=1.0, rng=rng), 175 + v_reset=RandomDistribution('normal', mu=-65.0, sigma=1.0, rng=rng), (%%) 176 +(% style="color:#000000" %) tau_refrac=1, tau_m=10, cm=1, i_offset=1.1) 177 177 178 178 **...** 179 179 ... ... @@ -263,7 +263,7 @@ 263 263 264 264 **...** 265 265 (% style="color:#000000" %)population2.record("v")(%%) 266 -(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5) 266 +(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p_connect=0.5, rng=rng) 267 267 synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 268 268 connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 269 269 (% style="color:#000000" %)sim.run(100.0)(%%) ... ... @@ -307,19 +307,20 @@ 307 307 \\(% style="color:#000000" %)"""Simple network model using PyNN""" 308 308 \\import pyNN.(% style="color:#e74c3c" %)neuron(% style="color:#000000" %) as sim(%%) 309 309 (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%) 310 -(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%) 310 +(% style="color:#000000" %)from pyNN.random import RandomDistribution, NumpyRNG(%%) 311 311 (% style="color:#000000" %)sim.setup(timestep=0.1)(%%) 312 +(% style="color:#000000" %)rng = NumpyRNG(seed=1)(%%) 312 312 (% style="color:#000000" %)cell_type = sim.IF_curr_exp( 313 - (%style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', mu=-65.0, sigma=1.0),314 - v_thresh=RandomDistribution('normal', mu=-55.0, sigma=1.0), 315 - v_reset=RandomDistribution('normal', mu=-65.0, sigma=1.0 ),(%%)316 - (%style="color:#000000"%)0.1)(%%)317 - (% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)318 - (% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2")314 + v_rest=RandomDistribution('normal', mu=-65.0, sigma=1.0, rng=rng), 315 + v_thresh=RandomDistribution('normal', mu=-55.0, sigma=1.0, rng=rng), 316 + v_reset=RandomDistribution('normal', mu=-65.0, sigma=1.0, rng=rng), 317 + tau_refrac=1, tau_m=10, cm=1, i_offset=1.1) 318 +population1 = sim.Population(100, cell_type, label="Population 1") 319 +population2 = sim.Population(100, cell_type, label="Population 2") 319 319 population2.set(i_offset=0) 320 320 population1.record("v") 321 -population2.record("v") (%%)322 - (% style="color:#000000" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5)322 +population2.record("v") 323 +connection_algorithm = sim.FixedProbabilityConnector(p_connect=0.5, rng=rng) 323 323 synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5) 324 324 connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%) 325 325 (% style="color:#000000" %)sim.run(100.0)(%%)