Warning:  Due to planned infrastructure maintenance, the EBRAINS Wiki and EBRAINS Support system will be unavailable for up to three days starting Monday, 14 July. During this period, both services will be inaccessible, and any emails sent to the support address will not be received.

Attention: We are currently experiencing some issues with the EBRAINS Drive. Please bear with us as we fix this issue. We apologise for any inconvenience caused.


Last modified by adavison on 2022/10/04 13:55

From version 19.1
edited by adavison
on 2021/12/01 13:17
Change comment: There is no comment for this version
To version 22.1
edited by shailesh
on 2021/12/09 20:27
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.adavison
1 +XWiki.shailesh
Content
... ... @@ -92,7 +92,7 @@
92 92  \\(% style="color:#000000" %)"""Simple network model using PyNN"""
93 93  \\import pyNN.nest as sim
94 94  sim.setup(timestep=0.1)(%%)
95 -(% style="color:#e74c3c" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)
95 +(% style="color:#e74c3c" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset=1.1)
96 96  )))
97 97  
98 98  Let's create 100 of these neurons; then, we're going to record the membrane voltage and run a simulation for 100 milliseconds.
... ... @@ -103,7 +103,7 @@
103 103  \\(% style="color:#000000" %)"""Simple network model using PyNN"""
104 104  \\import pyNN.nest as sim
105 105  sim.setup(timestep=0.1)(%%)
106 -(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
106 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset=1.1)(%%)
107 107  (% style="color:#e74c3c" %)population1 = sim.Population(100, cell_type, label="Population 1")
108 108  population1.record("v")
109 109  sim.run(100.0)(%%)
... ... @@ -119,7 +119,7 @@
119 119  \\import pyNN.nest as sim(%%)
120 120  (% style="color:#e74c3c" %)from pyNN.utility.plotting import Figure, Panel(%%)
121 121  (% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
122 -(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
122 +(% style="color:#000000" %)cell_type  = sim.IF_curr_exp(v_rest=-65, v_thresh=-55, v_reset=-65, tau_refrac=1, tau_m=10, cm=1, i_offset=1.1)(%%)
123 123  (% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")
124 124  population1.record("v")
125 125  sim.run(100.0)(%%)
... ... @@ -166,14 +166,14 @@
166 166  \\(% style="color:#000000" %)"""Simple network model using PyNN"""
167 167  \\import pyNN.nest as sim(%%)
168 168  (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
169 -(% style="color:#e74c3c" %)from pyNN.random import RandomDistribution(%%)
169 +(% style="color:#e74c3c" %)from pyNN.random import RandomDistribution, NumpyRNG(%%)
170 170  (% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
171 +(% style="color:#e74c3c" %)rng = NumpyRNG(seed=1)(%%)
171 171  (% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
172 - (% style="color:#e74c3c" %) v_rest=RandomDistribution('normal', mu=-65.0, sigma=1.0),
173 - v_thresh=RandomDistribution('normal', mu=-55.0, sigma=1.0),
174 - v_reset=RandomDistribution('normal', mu=-65.0, sigma=1.0), (%%)
175 -(% style="color:#000000" %) tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
176 -
173 + (% style="color:#e74c3c" %) v_rest=RandomDistribution('normal', mu=-65.0, sigma=1.0, rng=rng),
174 + v_thresh=RandomDistribution('normal', mu=-55.0, sigma=1.0, rng=rng),
175 + v_reset=RandomDistribution('normal', mu=-65.0, sigma=1.0, rng=rng), (%%)
176 +(% style="color:#000000" %) tau_refrac=1, tau_m=10, cm=1, i_offset=1.1)
177 177  
178 178  **...**
179 179  
... ... @@ -263,7 +263,7 @@
263 263  
264 264  **...**
265 265  (% style="color:#000000" %)population2.record("v")(%%)
266 -(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5)
266 +(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p_connect=0.5, rng=rng)
267 267  synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5)
268 268  connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%)
269 269  (% style="color:#000000" %)sim.run(100.0)(%%)
... ... @@ -307,19 +307,20 @@
307 307  \\(% style="color:#000000" %)"""Simple network model using PyNN"""
308 308  \\import pyNN.(% style="color:#e74c3c" %)neuron(% style="color:#000000" %) as sim(%%)
309 309  (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
310 -(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%)
310 +(% style="color:#000000" %)from pyNN.random import RandomDistribution, NumpyRNG(%%)
311 311  (% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
312 +(% style="color:#000000" %)rng = NumpyRNG(seed=1)(%%)
312 312  (% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
313 - (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', mu=-65.0, sigma=1.0),
314 - v_thresh=RandomDistribution('normal', mu=-55.0, sigma=1.0),
315 - v_reset=RandomDistribution('normal', mu=-65.0, sigma=1.0), (%%)
316 -(% style="color:#000000" %) tau_refrac=1, tau_m=10, cm=1, i_offset=0.1)(%%)
317 -(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
318 -(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2")
314 + v_rest=RandomDistribution('normal', mu=-65.0, sigma=1.0, rng=rng),
315 + v_thresh=RandomDistribution('normal', mu=-55.0, sigma=1.0, rng=rng),
316 + v_reset=RandomDistribution('normal', mu=-65.0, sigma=1.0, rng=rng)
317 + tau_refrac=1, tau_m=10, cm=1, i_offset=1.1)
318 +population1 = sim.Population(100, cell_type, label="Population 1")
319 +population2 = sim.Population(100, cell_type, label="Population 2")
319 319  population2.set(i_offset=0)
320 320  population1.record("v")
321 -population2.record("v")(%%)
322 -(% style="color:#000000" %)connection_algorithm = sim.FixedProbabilityConnector(p=0.5)
322 +population2.record("v")
323 +connection_algorithm = sim.FixedProbabilityConnector(p_connect=0.5, rng=rng)
323 323  synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5)
324 324  connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%)
325 325  (% style="color:#000000" %)sim.run(100.0)(%%)