Attention: Due to an upgrade beginning on Friday, the 22nd August 2025, any new collabs, groups and any changes to teams will not be kept beyond the weekend. User creation will also be disabled during this time. The actual upgrade will take place on Wednesday, 27th August. On that day, any service requiring a Keycloak login will be unavailable for the duration of the upgrade. Thank you for your understanding as we complete this important work.

The Wiki service will be temporarily unavailable for scheduled maintenance on Friday, August 22nd, 2025, starting at 12:30 CEST up to 1H.

Following the system restart, the Collaboration and Group creation features will be temporarily disabled and will return HTTP 503 Service Unavailable errors until further notice.


Last modified by adavison on 2022/10/04 13:55

From version 23.1
edited by shailesh
on 2021/12/09 21:40
Change comment: There is no comment for this version
To version 21.1
edited by shailesh
on 2021/12/09 20:14
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -84,7 +84,7 @@
84 84  
85 85  PyNN comes with a selection of integrate-and-fire models. We're going to use the IF_curr_exp model, where "IF" is for integrate-and-fire, "curr" means that synaptic responses are changes in current, and "exp" means that the shape of the current is a decaying exponential function.
86 86  
87 -This is where we set the parameters of the model: the resting membrane potential is -65 millivolts, the spike threshold is -55 millivolts, the reset voltage after a spike is again -65 millivolts, the refractory period after a spike is one millisecond, the membrane time constant is 10 milliseconds, and the membrane capacitance is 1 nanofarad. We're also going to inject a constant bias current of 1.1 nanoamps into these neurons, so that we get some action potentials.
87 +This is where we set the parameters of the model: the resting membrane potential is -65 millivolts, the spike threshold is -55 millivolts, the reset voltage after a spike is again -65 millivolts, the refractory period after a spike is one millisecond, the membrane time constant is 10 milliseconds, and the membrane capacitance is 1 nanofarad. We're also going to inject a constant bias current of 0.1 nanoamps into these neurons, so that we get some action potentials.
88 88  
89 89  (% class="box infomessage" %)
90 90  (((
... ... @@ -166,14 +166,14 @@
166 166  \\(% style="color:#000000" %)"""Simple network model using PyNN"""
167 167  \\import pyNN.nest as sim(%%)
168 168  (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
169 -(% style="color:#e74c3c" %)from pyNN.random import RandomDistribution, NumpyRNG(%%)
169 +(% style="color:#e74c3c" %)from pyNN.random import RandomDistribution(%%)
170 170  (% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
171 -(% style="color:#e74c3c" %)rng = NumpyRNG(seed=1)(%%)
172 172  (% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
173 - (% style="color:#e74c3c" %) v_rest=RandomDistribution('normal', mu=-65.0, sigma=1.0, rng=rng),
174 - v_thresh=RandomDistribution('normal', mu=-55.0, sigma=1.0, rng=rng),
175 - v_reset=RandomDistribution('normal', mu=-65.0, sigma=1.0, rng=rng), (%%)
176 -(% style="color:#000000" %) tau_refrac=1, tau_m=10, cm=1, i_offset=1.1)
172 + (% style="color:#e74c3c" %) v_rest=RandomDistribution('normal', mu=-65.0, sigma=1.0),
173 + v_thresh=RandomDistribution('normal', mu=-55.0, sigma=1.0),
174 + v_reset=RandomDistribution('normal', mu=-65.0, sigma=1.0), (%%)
175 +(% style="color:#000000" %) tau_refrac=1, tau_m=10, cm=1, i_offset=1.1)(%%)
176 +
177 177  
178 178  **...**
179 179  
... ... @@ -263,7 +263,7 @@
263 263  
264 264  **...**
265 265  (% style="color:#000000" %)population2.record("v")(%%)
266 -(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p_connect=0.5, rng=rng)
266 +(% style="color:#e74c3c" %)connection_algorithm = sim.FixedProbabilityConnector(p_connect=0.5)
267 267  synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5)
268 268  connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%)
269 269  (% style="color:#000000" %)sim.run(100.0)(%%)
... ... @@ -307,20 +307,19 @@
307 307  \\(% style="color:#000000" %)"""Simple network model using PyNN"""
308 308  \\import pyNN.(% style="color:#e74c3c" %)neuron(% style="color:#000000" %) as sim(%%)
309 309  (% style="color:#000000" %)from pyNN.utility.plotting import Figure, Panel(%%)
310 -(% style="color:#000000" %)from pyNN.random import RandomDistribution, NumpyRNG(%%)
310 +(% style="color:#000000" %)from pyNN.random import RandomDistribution(%%)
311 311  (% style="color:#000000" %)sim.setup(timestep=0.1)(%%)
312 -(% style="color:#000000" %)rng = NumpyRNG(seed=1)(%%)
313 313  (% style="color:#000000" %)cell_type  = sim.IF_curr_exp(
314 - v_rest=RandomDistribution('normal', mu=-65.0, sigma=1.0, rng=rng),
315 - v_thresh=RandomDistribution('normal', mu=-55.0, sigma=1.0, rng=rng),
316 - v_reset=RandomDistribution('normal', mu=-65.0, sigma=1.0, rng=rng)
317 - tau_refrac=1, tau_m=10, cm=1, i_offset=1.1)
318 -population1 = sim.Population(100, cell_type, label="Population 1")
319 -population2 = sim.Population(100, cell_type, label="Population 2")
313 + (% style="color:#e74c3c" %) (% style="color:#000000" %)v_rest=RandomDistribution('normal', mu=-65.0, sigma=1.0),
314 + v_thresh=RandomDistribution('normal', mu=-55.0, sigma=1.0),
315 + v_reset=RandomDistribution('normal', mu=-65.0, sigma=1.0), (%%)
316 +(% style="color:#000000" %) tau_refrac=1, tau_m=10, cm=1, i_offset=1.1)(%%)
317 +(% style="color:#000000" %)population1 = sim.Population(100, cell_type, label="Population 1")(%%)
318 +(% style="color:#000000" %)population2 = sim.Population(100, cell_type, label="Population 2")
320 320  population2.set(i_offset=0)
321 321  population1.record("v")
322 -population2.record("v")
323 -connection_algorithm = sim.FixedProbabilityConnector(p_connect=0.5, rng=rng)
321 +population2.record("v")(%%)
322 +(% style="color:#000000" %)connection_algorithm = sim.FixedProbabilityConnector(p_connect=0.5)
324 324  synapse_type = sim.StaticSynapse(weight=0.5, delay=0.5)
325 325  connections = sim.Projection(population1, population2, connection_algorithm, synapse_type)(%%)
326 326  (% style="color:#000000" %)sim.run(100.0)(%%)