Attention: Due to an upgrade beginning on Friday, the 22nd August 2025, any new collabs, groups and any changes to teams will not be kept beyond the weekend. User creation will also be disabled during this time. The actual upgrade will take place on Wednesday, 27th August. On that day, any service requiring a Keycloak login will be unavailable for the duration of the upgrade. Thank you for your understanding as we complete this important work.

The Wiki service will be temporarily unavailable for scheduled maintenance on Friday, August 22nd, 2025, starting at 12:30 CEST up to 1H.

Following the system restart, the Collaboration and Group creation features will be temporarily disabled and will return HTTP 503 Service Unavailable errors until further notice.


Last modified by adavison on 2022/10/04 13:55

From version 24.1
edited by shailesh
on 2021/12/09 23:07
Change comment: There is no comment for this version
To version 22.1
edited by shailesh
on 2021/12/09 20:27
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -84,7 +84,7 @@
84 84  
85 85  PyNN comes with a selection of integrate-and-fire models. We're going to use the IF_curr_exp model, where "IF" is for integrate-and-fire, "curr" means that synaptic responses are changes in current, and "exp" means that the shape of the current is a decaying exponential function.
86 86  
87 -This is where we set the parameters of the model: the resting membrane potential is -65 millivolts, the spike threshold is -55 millivolts, the reset voltage after a spike is again -65 millivolts, the refractory period after a spike is one millisecond, the membrane time constant is 10 milliseconds, and the membrane capacitance is 1 nanofarad. We're also going to inject a constant bias current of 1.1 nanoamps into these neurons, so that we get some action potentials.
87 +This is where we set the parameters of the model: the resting membrane potential is -65 millivolts, the spike threshold is -55 millivolts, the reset voltage after a spike is again -65 millivolts, the refractory period after a spike is one millisecond, the membrane time constant is 10 milliseconds, and the membrane capacitance is 1 nanofarad. We're also going to inject a constant bias current of 0.1 nanoamps into these neurons, so that we get some action potentials.
88 88  
89 89  (% class="box infomessage" %)
90 90  (((
... ... @@ -356,7 +356,7 @@
356 356  
357 357  Of course, PyNN allows you to create much more complex networks than this, with more realistic neuron models, synaptic plasticity, spatial structure, and so on. You can also use other simulators, such as Brian or SpiNNaker, and you can run simulations in parallel on clusters or supercomputers.
358 358  
359 -We will be releasing a series of tutorials, throughout this year, to introduce these more advanced features of PyNN, so keep an eye on the EBRAINS website.
359 +We will be releasing a series of tutorials, throughout the rest of 2021 and 2022, to introduce these more advanced features of PyNN, so keep an eye on the EBRAINS website.
360 360  
361 361  (% class="box successmessage" %)
362 362  (((