Changes for page 2. Example of use

Last modified by puchades on 2020/10/06 13:18

From version 32.2
edited by puchades
on 2020/10/01 09:47
Change comment: There is no comment for this version
To version 35.1
edited by puchades
on 2020/10/01 10:01
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,7 +1,7 @@
1 1  == (% style="color:#c0392b" %)How can I identify brain regions in my images?(%%) ==
2 2  
3 3  (% class="wikigeneratedid" %)
4 -By using QuickNII, you will be able to register this image series to the mouse reference atlas version of your choice and obtain adapted atlas maps and coordinates. Further, in-plane non-linear adjustments can be made with VisuAlign in order to obtain a more precise registration. The regions shown in the example below are color coded and correspond to Mouse CCFv3_2017 atlas (Oh et al. 2014).
4 +By using QuickNII, you will be able to register this image series to the mouse reference atlas version of your choice and obtain adapted atlas maps and coordinates. Further, in-plane non-linear adjustments can be made with VisuAlign in order to obtain a more precise registration. The regions shown in the example below are color coded and correspond to Mouse CCFv3_2017 atlas^^1^^ .
5 5  
6 6  (% class="wikigeneratedid" id="H" %)
7 7  (% style="color:#c0392b" %)[[image:Doublet_illust_NOP_tta.png]]
... ... @@ -9,12 +9,19 @@
9 9  
10 10  == (% style="color:#c0392b" %)How can I map the position of my reconstructed neuron?(%%) ==
11 11  
12 -After in-vivo electrophysiology experiments, the recorded neurons are filled with neurobiotin making them visible on histological images. These images are registered to the Mouse atlas CCFv3_2017 (Oh et al. 2014). The extracted coordinates of the neuron soma and the coordinates of the neuronal arbor, could then be mapped in the 3D reference space.
12 +After in-vivo electrophysiology experiments, the recorded neurons are filled with neurobiotin making them visible on histological images. These images are registered to the Mouse atlas CCFv3_2017^^1^^. The extracted coordinates of the neuron soma and the coordinates of the neuronal arbor, could then be mapped in the 3D reference space.
13 13  
14 14  
15 15  
16 -[[image:QNII_neuron_recons.png]]
16 +(% style="text-align:center" %)
17 +[[image:QNII_neuron_recons.png||height="600" width="565"]]
17 17  
19 +(% class="wikigeneratedid" %)
20 +Image from Bjerke et al. 2018. //Front. Neuroinform.// 12:82. [[doi:10.3389/fnana.2018.00082 >>https://www.frontiersin.org/articles/10.3389/fnana.2018.00082/full]]
21 +
22 +(% class="wikigeneratedid" %)
23 +Electrophysiological data available on EBRAINS: DOI: [[10.25493/ADRK-VJP>>https://kg.ebrains.eu/search/?facet_type[0]=Dataset&q=grillner#Dataset/749eab9b-3159-4eb8-a36b-85757208e3c1]]
24 +
18 18  == (% style="color:#c0392b" %)How can I count my labelled cells?(%%) ==
19 19  
20 20  
... ... @@ -26,3 +26,8 @@
26 26  
27 27  
28 28  == (% style="color:#c0392b" %)How can I map the position of my electrode?(%%) ==
36 +
37 +
38 +
39 +
40 +~1. (Oh et al. 2014)