Changes for page 2. Example of use
Last modified by puchades on 2020/10/06 13:18
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,7 +1,7 @@ 1 1 == (% style="color:#c0392b" %)How can I identify brain regions in my images?(%%) == 2 2 3 3 (% class="wikigeneratedid" %) 4 -By using QuickNII, you will be able to register this image series to the mouse reference atlas version of your choice and obtain adapted atlas maps and coordinates. Further, in-plane non-linear adjustments can be made with VisuAlign in order to obtain a more precise registration. The regions shown in the example below are color coded and correspond to Mouse CCFv3_2017 atlas ^^1^^.4 +By using QuickNII, you will be able to register this image series to the mouse reference atlas version of your choice and obtain adapted atlas maps and coordinates. Further, in-plane non-linear adjustments can be made with VisuAlign in order to obtain a more precise registration. The regions shown in the example below are color coded and correspond to Mouse CCFv3_2017 atlas (Oh et al. 2014). 5 5 6 6 (% class="wikigeneratedid" id="H" %) 7 7 (% style="color:#c0392b" %)[[image:Doublet_illust_NOP_tta.png]] ... ... @@ -9,19 +9,12 @@ 9 9 10 10 == (% style="color:#c0392b" %)How can I map the position of my reconstructed neuron?(%%) == 11 11 12 -After in-vivo electrophysiology experiments, the recorded neurons are filled with neurobiotin making them visible on histological images. These images are registered to the Mouse atlas CCFv3_2017 ^^1^^. The extracted coordinates of the neuron soma and the coordinates of the neuronal arbor, could then be mapped in the 3D reference space.12 +After in-vivo electrophysiology experiments, the recorded neurons are filled with neurobiotin making them visible on histological images. These images are registered to the Mouse atlas CCFv3_2017 (Oh et al. 2014). The extracted coordinates of the neuron soma and the coordinates of the neuronal arbor, could then be mapped in the 3D reference space. 13 13 14 14 15 15 16 -(% style="text-align:center" %) 17 17 [[image:QNII_neuron_recons.png||height="600" width="565"]] 18 18 19 -(% class="wikigeneratedid" %) 20 -Image from Bjerke et al. 2018. //Front. Neuroinform.// 12:82. [[doi:10.3389/fnana.2018.00082 >>https://www.frontiersin.org/articles/10.3389/fnana.2018.00082/full]] 21 - 22 -(% class="wikigeneratedid" %) 23 -Electrophysiological data available on EBRAINS: DOI: [[10.25493/ADRK-VJP>>https://kg.ebrains.eu/search/?facet_type[0]=Dataset&q=grillner#Dataset/749eab9b-3159-4eb8-a36b-85757208e3c1]] 24 - 25 25 == (% style="color:#c0392b" %)How can I count my labelled cells?(%%) == 26 26 27 27 ... ... @@ -33,8 +33,3 @@ 33 33 34 34 35 35 == (% style="color:#c0392b" %)How can I map the position of my electrode?(%%) == 36 - 37 - 38 - 39 - 40 -~1. (Oh et al. 2014)