Changes for page 2. Image pre-processing with Nutil Transform
Last modified by puchades on 2021/12/07 10:37
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,12 +1,19 @@ 1 1 == Image pre-processing with Nutil Transform == 2 2 3 3 4 - Loremipsum dolorsit amet,consecteturadipiscingelit, seddo eiusmodtemporincididuntutlabore et dolore magnaaliqua. Utenim ad minimveniam, quisnostrudexercitationullamcolaborisnisiutaliquip ex ea commodoconsequat. Duisauteiruredolorinreprehenderitin voluptatevelitessecillum doloreeufugiatnullapariatur. Excepteur sintoccaecat cupidatatnon proident,suntin culpaquiofficia deseruntmollit anim idestlaborum.4 +**The //Transform// feature in the //Nutil// software **enables **image rotation, renaming, resizing and mirroring** and was used to prepare the image series for //QuickNII //alignment and //ilastik //segmentation. 5 5 6 ->Th isisaquote.Youanaddaquote byselectingsometextandclickingthe quotebuttonintheeditor.6 +>The input size requirements for the //QuickNII// and //ilastik// software differ. Naming convention of files is important. 7 7 8 -Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. 8 +For //QuickNII,// the input requirements described in (Puchades et al., 2019) are: 9 +24-bit PNG and JPEG. Images can be loaded up to the resolution of 16 megapixels (e.g.4000x4000 or 5000x3000 pixels), however QuickNII does not benefit from image resolutions exceeding the resolution of the monitor in use. For a standard FullHD or WUXGA display 10 +(1920x1080 or 1920x1200 pixels) the useful image area is approximately 1500x1000 pixels,using a similar resolution ensures optimal image-loading performance. 9 9 12 +For //ilastik// (Borg et al.2019), the resizing was performed in order to enable efficient processing. To clarify, the pixel classification algorithm relies on input from manual user annotations of training images, and the features ‒ intensity, edge and/or texture ‒ of the image pixels. In practice, a test run was performed with //ilastik// on images of different sizes to find the optimal resolution for segmentation, with a final resize factor of e.g 0.1 for cellular features, and a factor of 0.05 for series with larger features like Alzheimer plaques. 13 + 14 +==== **Naming convention:** ==== 15 + 16 + 10 10 === H3 Headings Will Appear In The Table of Content === 11 11 12 12 ==== You can also add images ====