Changes for page 4. Image segmentation with ilastik
Last modified by annedevismes on 2021/06/08 11:56
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. puchades1 +XWiki.sharoncy - Content
-
... ... @@ -1,30 +1,46 @@ 1 -== H2 Headings Will Appearin Tableof Content ==1 +== [[image:ilastik_logo.PNG||style="float:right"]] == 2 2 3 +== (% style="color:#c0392b" %)ilastik(%%) == 3 3 4 - Lorem ipsum dolor sitamet, consectetur adipiscingelit,seddoeiusmodtemporincididunt utlaboreet doloremagnaaliqua.Ut enimadminim veniam,quis nostrudexercitationullamcolaborisnisiut aliquip ex eacommodo consequat. Duisauteirure dolor inreprehenderitinvoluptate velit essecillumdolore eu fugiat nullapariatur. Excepteursintoccaecat cupidatatnon proident,sunt in culpaqui officia deseruntmollitanimid est laborum.5 +Ilastik is a versatile image analysis tool specifically designed for the classification, segmentation and analysis of biological images based on supervised machine learning algorithms. 5 5 6 - >Thisisa quote. Youcanaddaquotebyselectingsometext and clickingthequote button in theeditor.7 +== (% style="color:#c0392b" %)Analysis approach for series of rodent brain section image(%%) == 7 7 8 - Lorem ipsum dolorsit amet,consecteturadipiscing elit, sed do eiusmod temporincididunt ut laboreetdoloremagna aliqua. Ut enimad minim veniam, quis nostrud exercitation ullamcolaborisnisi utaliquipexeacommodo consequat. Duisaute irure dolorinreprehenderit involuptatevelit esse cillum dolore eu fugiat nulla pariatur. Excepteur sintoccaecatcupidatat nonproident, sunt in culpa qui officia deseruntmollitanim idest laborum.9 +There are two main approaches for the analysis of rodent brain section images. 9 9 10 -=== H3 Headings Will Appear In The Table of Content === 11 +1. Pixel classification only (with two or more classes) 12 +1. Pixel classification with two classes (//immunoreactivity// and //background//), followed by object classification with two classes (//objects of interest// and //artefact//). 11 11 12 - ==== Youcanalsoddimages====14 +**Which approach is best for my dataset?** 13 13 14 - [[image:Collaboratory.Apps.Article.Code.ArticleSheet@placeholder.jpg]]16 +As a general rule, pixel classification is suitable for images in which there are clear differences in the colour, intensity and/ or texture of the feature of interest (labelling) versus the background and other structures. If there is non-specific labelling in the image that is very similar in appearance to the labelling of interest, object classification may allow the non-specific labelling to be filtered out based on object level features such as size and shape. The best approach is determined by trial and error. 15 15 16 - PhotoyDavidClode18 +=== (% style="color:#c0392b" %)Pixel classification workflow(%%) === 17 17 18 - ==== Or code====20 +For a quick introduction, watch: [[https:~~/~~/www.youtube.com/watch?v=5N0XYW9gRZY&feature=youtu.be>>url:https://www.youtube.com/watch?v=5N0XYW9gRZY&feature=youtu.be]] 19 19 20 - Code blocks can be added by usingthecode macro:22 +**Basic steps:** 21 21 22 -{{code language="python"}} 23 -x = 1 24 -if x == 1: 25 - # indented four spaces 26 - print("x is 1.") 27 -{{/code}} 24 +-Train the classifier with two classes (labeling and background) 28 28 29 -(% class="wikigeneratedid" id="HH4Won27tAppearinToC" %) 30 - 26 +-Apply the classifier to the rest of the images (batch processing) 27 + 28 +-Export the probability maps in HDH5 format, and simple_segmentation images in PNG format with the default settings. 29 + 30 +-Review the results. 31 + 32 +=== (% style="color:#c0392b" %)Object classification workflow(%%) === 33 + 34 +There are three options on the ilastik start up page for running Object Classification. Choose the //Object Classification with Raw Data and Pixel Prediction Maps as input//**.** 35 + 36 +-Save the object classification file in the same folder as the raw images for analysis. If the images are moved after the ilastik file is created, the link between the ilastik file and the images may be lost, resulting in a corrupted file. 37 + 38 +-In the **Input Data** applet, upload the original images and their respective probability maps in HDH5 format (output from the Pixel Classification). 39 + 40 +-Train the classifier with two classes (labelling and artefacts) 41 + 42 +(% class="wikigeneratedid" id="H" %) 43 +-In the **Object Information Export** applet, export “Object Predictions” in PNG format. Do not change the default export location. 44 + 45 +(% class="wikigeneratedid" %) 46 +-Review the results.
- ilastik_logo.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.puchades - Size
-
... ... @@ -1,0 +1,1 @@ 1 +6.0 KB - Content