Last modified by annedevismes on 2021/06/08 11:56

From version 13.2
edited by puchades
on 2020/09/24 12:14
Change comment: There is no comment for this version
To version 19.1
edited by puchades
on 2020/09/24 12:17
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,10 +1,10 @@
1 1  == [[image:ilastik_logo.PNG||style="float:right"]] ==
2 2  
3 -== (% style="color:#c0392b" %)Analysis approach for series of rodent brain section image(%%) ==
3 +== [[image:Pixel_classification workflow.png||style="float:left"]](% style="color:#c0392b" %)Analysis approach for series of rodent brain section image(%%) ==
4 4  
5 5  Ilastik is a versatile image analysis tool specifically designed for the classification, segmentation and analysis of biological images based on supervised machine learning algorithms.
6 6  
7 -There are two main approaches for the analysis of rodent brain section images.
7 +**There are two main approaches for the analysis of rodent brain section image**
8 8  
9 9  1. Pixel classification only (with two or more classes)
10 10  1. Pixel classification with two classes (//immunoreactivity// and //background//), followed by object classification with two classes (//objects of interest// and //artefact//).
... ... @@ -24,15 +24,14 @@
24 24  * Export the probability maps in HDF5 format, and simple_segmentation images in PNG format with the default settings.
25 25  * Review the results.
26 26  
27 -[[image:Pixel_classification workflow.png||style="float:left"]]
27 +=== ===
28 28  
29 -=== ===
29 +=== ===
30 30  
31 -=== ===
31 +=== ===
32 32  
33 -=== ===
33 +=== ===
34 34  
35 -=== ===
36 36  
37 37  
38 38  
... ... @@ -43,7 +43,6 @@
43 43  
44 44  
45 45  
46 -
47 47  === (% style="color:#c0392b" %)Object classification workflow(%%) ===
48 48  
49 49  There are three options on the ilastik start up page for running Object Classification.  Choose the //Object Classification with Raw Data and Pixel Prediction Maps as input//**.**
... ... @@ -53,5 +53,3 @@
53 53  * Train the classifier with two classes (labelling and artefacts)
54 54  * In the **Object Information Export** applet, export “Object Predictions” in PNG format.  Do not change the default export location.
55 55  * Review the results.
56 -
57 -