Warning:  Due to planned infrastructure maintenance, the EBRAINS Wiki and EBRAINS Support system will be unavailable for up to three days starting Monday, 14 July. During this period, both services will be inaccessible, and any emails sent to the support address will not be received.

Attention: The EBRAINS Chat will down on Thursday, the 10th of July 2025 starting from 18.00pm CEST (my timezone) for up to 1 hour. 

Warning: The EBRAINS Drive, EBRAINS Bucket and EBRAINS Lab will down today, Wednesday, the 9th of July 2025 starting from 19:30 CEST (my timezone) for up to 1 hour.


Last modified by annedevismes on 2021/06/08 11:56

From version 14.1
edited by puchades
on 2020/09/24 12:14
Change comment: There is no comment for this version
To version 1.2
edited by puchades
on 2020/03/24 09:59
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,57 +1,30 @@
1 -== [[image:ilastik_logo.PNG||style="float:right"]] ==
1 +== H2 Headings Will Appear in Table of Content ==
2 2  
3 -== (% style="color:#c0392b" %)Analysis approach for series of rodent brain section image(%%) ==
4 4  
5 -Ilastik is a versatile image analysis tool specifically designed for the classification, segmentation and analysis of biological images based on supervised machine learning algorithms.
4 +Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
6 6  
7 -There are two main approaches for the analysis of rodent brain section images.
6 +>This is a quote. You can add a quote by selecting some text and clicking the quote button in the editor.
8 8  
9 -1. Pixel classification only (with two or more classes)
10 -1. Pixel classification with two classes (//immunoreactivity// and //background//), followed by object classification with two classes (//objects of interest// and //artefact//).
8 +Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
11 11  
12 -**Which approach is best for my dataset?**
10 +=== H3 Headings Will Appear In The Table of Content ===
13 13  
14 -As a general rule, pixel classification is suitable for images in which there are clear differences in the colour, intensity and / or texture of the feature of interest (labelling) versus the background and other structures.  If there is non-specific labelling in the image that is very similar in appearance to the labelling of interest, object classification may allow the non-specific labelling to be filtered out based on object level features such as shape and size. The best approach is determined by trial and error.
12 +==== You can also add images ====
15 15  
16 -=== (% style="color:#c0392b" %)Pixel classification workflow(%%) ===
14 +[[image:Collaboratory.Apps.Article.Code.ArticleSheet@placeholder.jpg]]
17 17  
18 -For a quick introduction, [[watch this video>>https://www.youtube.com/watch?v=5N0XYW9gRZY&feature=youtu.be]].
16 +Photo by David Clode
19 19  
20 -**Basic steps:**
18 +==== Or code ====
21 21  
22 -* Train the classifier with two classes (labelling and background)
23 -* Apply the classifier to the rest of the images (batch processing)
24 -* Export the probability maps in HDF5 format, and simple_segmentation images in PNG format with the default settings.
25 -* Review the results.
20 +Code blocks can be added by using the code macro:
26 26  
27 -[[image:Pixel_classification workflow.png||style="float:left"]]
22 +{{code language="python"}}
23 +x = 1
24 +if x == 1:
25 + # indented four spaces
26 + print("x is 1.")
27 +{{/code}}
28 28  
29 -=== ===
30 -
31 -=== ===
32 -
33 -=== ===
34 -
35 -=== ===
36 -
37 -
38 -
39 -
40 -
41 -
42 -
43 -
44 -
45 -
46 -
47 -=== (% style="color:#c0392b" %)Object classification workflow(%%) ===
48 -
49 -There are three options on the ilastik start up page for running Object Classification.  Choose the //Object Classification with Raw Data and Pixel Prediction Maps as input//**.**
50 -
51 -* Save the object classification file in the same folder as the raw images for analysis.  If the images are moved after the ilastik file is created, the link between the ilastik file and the images may be lost, resulting in a corrupted file.
52 -* In the **Input Data** applet, upload the original images and their respective probability maps in HDF5 format (output from the Pixel Classification).
53 -* Train the classifier with two classes (labelling and artefacts)
54 -* In the **Object Information Export** applet, export “Object Predictions” in PNG format.  Do not change the default export location.
55 -* Review the results.
56 -
29 +(% class="wikigeneratedid" id="HH4Won27tAppearinToC" %)
57 57  
Pixel_classification workflow.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.puchades
Size
... ... @@ -1,1 +1,0 @@
1 -1.0 MB
Content
ilastik_logo.PNG
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.puchades
Size
... ... @@ -1,1 +1,0 @@
1 -6.0 KB
Content