Last modified by annedevismes on 2021/06/08 11:56

From version 16.1
edited by puchades
on 2020/09/24 12:16
Change comment: There is no comment for this version
To version 13.2
edited by puchades
on 2020/09/24 12:14
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,22 +1,11 @@
1 1  == [[image:ilastik_logo.PNG||style="float:right"]] ==
2 2  
3 -== [[image:Pixel_classification workflow.png||style="float:left"]](% style="color:#c0392b" %)Analysis approach for series of rodent brain section image(%%) ==
3 +== (% style="color:#c0392b" %)Analysis approach for series of rodent brain section image(%%) ==
4 4  
5 5  Ilastik is a versatile image analysis tool specifically designed for the classification, segmentation and analysis of biological images based on supervised machine learning algorithms.
6 6  
7 +There are two main approaches for the analysis of rodent brain section images.
7 7  
8 -
9 -
10 -
11 -
12 -
13 -
14 -
15 -
16 -
17 -
18 -There are two main approaches for the analysis of rodent brain section image
19 -
20 20  1. Pixel classification only (with two or more classes)
21 21  1. Pixel classification with two classes (//immunoreactivity// and //background//), followed by object classification with two classes (//objects of interest// and //artefact//).
22 22  
... ... @@ -35,14 +35,15 @@
35 35  * Export the probability maps in HDF5 format, and simple_segmentation images in PNG format with the default settings.
36 36  * Review the results.
37 37  
38 -=== ===
27 +[[image:Pixel_classification workflow.png||style="float:left"]]
39 39  
40 -=== ===
29 +=== ===
41 41  
42 -=== ===
31 +=== ===
43 43  
44 -=== ===
33 +=== ===
45 45  
35 +=== ===
46 46  
47 47  
48 48  
... ... @@ -53,6 +53,7 @@
53 53  
54 54  
55 55  
46 +
56 56  === (% style="color:#c0392b" %)Object classification workflow(%%) ===
57 57  
58 58  There are three options on the ilastik start up page for running Object Classification.  Choose the //Object Classification with Raw Data and Pixel Prediction Maps as input//**.**
... ... @@ -62,3 +62,5 @@
62 62  * Train the classifier with two classes (labelling and artefacts)
63 63  * In the **Object Information Export** applet, export “Object Predictions” in PNG format.  Do not change the default export location.
64 64  * Review the results.
56 +
57 +