Changes for page 4. Image segmentation with ilastik
Last modified by annedevismes on 2021/06/08 11:56
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -11,25 +11,22 @@ 11 11 12 12 === Pixel classification workflow === 13 13 14 -For a quick introduction, watch: [[https:~~/~~/www.youtube.com/watch?v=5N0XYW9gRZY&feature=youtu.be>>url:https://www.youtube.com/watch?v=5N0XYW9gRZY&feature=youtu.be]] 15 15 16 - **Basicsteps:**15 +==== ==== 17 17 18 --Train the classifier with two classes (labeling and background) 19 19 20 - -Apply the classifier tohe restoftheimages(Batch processing)18 +Photo by David Clode 21 21 22 - -Exportthe probabilitymaps in HDH5 format, andsimple_segmentationimages in .png format, with the default settings.20 +==== Or code ==== 23 23 24 - ===Objectclassificationworkflow ===22 +Code blocks can be added by using the code macro: 25 25 26 -There are three options on the ilastik start up page for running Object Classification. Choose the //Object Classification with Raw Data and Pixel Prediction Maps as input//**.** 24 +{{code language="python"}} 25 +x = 1 26 +if x == 1: 27 + # indented four spaces 28 + print("x is 1.") 29 +{{/code}} 27 27 28 --Save the object classification file in the same folder as the raw images for analysis. If the images are moved after the ilastik file is created, the link between the ilastik file and the images may be lost, resulting in a corrupted file. 29 - 30 -- 31 - 32 -==== ==== 33 - 34 - 31 +(% class="wikigeneratedid" id="HH4Won27tAppearinToC" %) 35 35