Changes for page 4. Image segmentation with ilastik
Last modified by annedevismes on 2021/06/08 11:56
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. sharoncy1 +XWiki.puchades - Content
-
... ... @@ -1,46 +1,30 @@ 1 -== [[image:ilastik_logo.PNG||style="float:right"]]==1 +== H2 Headings Will Appear in Table of Content == 2 2 3 3 4 -(% class="wikigeneratedid" %) 5 -== (% style="color:#c0392b" %)Analysis approach for series of rodent brain section image(%%) == 4 +Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. 6 6 7 - Ilastikis aversatileimage analysis toolspecificallydesignedfortheclassification,segmentationandanalysis of biologicalimagesbasedonsupervisedmachinelearning algorithms.6 +>This is a quote. You can add a quote by selecting some text and clicking the quote button in the editor. 8 8 9 - There are two main approachesfor the analysisofrodentbrain section images.8 +Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. 10 10 11 -1. Pixel classification only (with two or more classes) 12 -1. Pixel classification with two classes (//immunoreactivity// and //background//), followed by object classification with two classes (//objects of interest// and //artefact//). 10 +=== H3 Headings Will Appear In The Table of Content === 13 13 14 - **Whichapproachisbest formydataset?**12 +==== You can also add images ==== 15 15 16 - As a general rule, pixel classification is suitable for images in which there are clear differences in the colour, intensity and/ or texture of the feature of interest (labelling) versus the background and otherstructures. If there is non-specific labelling inthe image that is verysimilar in appearanceto the labelling of interest, object classification may allow thenon-specific labelling to be filtered outbased on objectlevel features suchas sizeand shape. The bestapproach is determined by trialandror.14 +[[image:Collaboratory.Apps.Article.Code.ArticleSheet@placeholder.jpg]] 17 17 18 - === (% style="color:#c0392b"%)Pixel classificationworkflow(%%) ===16 +Photo by David Clode 19 19 20 - Fora quick introduction,watch: [[https:~~/~~/www.youtube.com/watch?v=5N0XYW9gRZY&feature=youtu.be>>url:https://www.youtube.com/watch?v=5N0XYW9gRZY&feature=youtu.be]]18 +==== Or code ==== 21 21 22 - **Basic steps:**20 +Code blocks can be added by using the code macro: 23 23 24 --Train the classifier with two classes (labeling and background) 22 +{{code language="python"}} 23 +x = 1 24 +if x == 1: 25 + # indented four spaces 26 + print("x is 1.") 27 +{{/code}} 25 25 26 --Apply the classifier to the rest of the images (batch processing) 27 - 28 --Export the probability maps in HDH5 format, and simple_segmentation images in PNG format with the default settings. 29 - 30 --Review the results. 31 - 32 -=== (% style="color:#c0392b" %)Object classification workflow(%%) === 33 - 34 -There are three options on the ilastik start up page for running Object Classification. Choose the //Object Classification with Raw Data and Pixel Prediction Maps as input//**.** 35 - 36 --Save the object classification file in the same folder as the raw images for analysis. If the images are moved after the ilastik file is created, the link between the ilastik file and the images may be lost, resulting in a corrupted file. 37 - 38 --In the **Input Data** applet, upload the original images and their respective probability maps in HDH5 format (output from the Pixel Classification). 39 - 40 --Train the classifier with two classes (labelling and artefacts) 41 - 42 -(% class="wikigeneratedid" id="H" %) 43 --In the **Object Information Export** applet, export “Object Predictions” in PNG format. Do not change the default export location. 44 - 45 -(% class="wikigeneratedid" %) 46 --Review the results. 29 +(% class="wikigeneratedid" id="HH4Won27tAppearinToC" %) 30 +
- ilastik_logo.PNG
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.puchades - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.0 KB - Content