Hide last authors
author | version | line-number | content |
---|---|---|---|
![]() |
63.1 | 1 | (% class="box infomessage" %) |
2 | ((( | ||
![]() |
65.1 | 3 | Online documentation: - |
![]() |
63.1 | 4 | |
![]() |
65.1 | 5 | [[QuickNII user documentation>>https://quicknii.readthedocs.io/en/latest/index.html]] |
![]() |
63.1 | 6 | |
![]() |
65.1 | 7 | [[VisuAlign user documentation>>https://visualign.readthedocs.io/en/latest/index.html]] |
![]() |
63.1 | 8 | |
![]() |
65.1 | 9 | [[Ilastik user documentation>>https://nutil.readthedocs.io/en/latest/Ilastik.html]] |
![]() |
63.1 | 10 | |
![]() |
65.1 | 11 | [[Nutil user documentation>>https://nutil.readthedocs.io/en/latest/index.html]] |
12 | ))) | ||
13 | |||
14 | |||
![]() |
48.1 | 15 | [[image:QUINT_workflow_Plaques.png||style="float:left"]] |
![]() |
7.1 | 16 | |
![]() |
49.1 | 17 | == (% style="color:#c0392b" %)**Description**(%%) == |
![]() |
8.1 | 18 | |
![]() |
62.2 | 19 | **The QUINT workflow enables an atlas-based analysis of extracted features from histological image sections from the rodent brain by using 3D reference atlases. ** |
![]() |
1.1 | 20 | |
![]() |
62.2 | 21 | **Examples of use are cell counting and spatial distributions, determination of projection areas in connectivity experiments, and exploration of pathological hallmarks in brain-disease models. Integration of various data to the same reference space enables new exploration strategies and reuse of experimental data.** |
![]() |
50.1 | 22 | |
![]() |
62.2 | 23 | The workflow is built on the following open-access software. |
![]() |
50.1 | 24 | |
![]() |
62.2 | 25 | * [[(% style="color:#2980b9" %)//ilastik//>>doc:.3\. Image segmentation with ilastik.WebHome]](%%) allows the extraction of labelled features such as cells, by using machine-learning image segmentation. |
![]() |
36.2 | 26 | * [[(% style="color:#2980b9" %)//QuickNII//>>doc:.Image registration to reference atlas using QuickNII.WebHome]](%%) generates custom-angle slices from volumetric brain atlases to match the proportions and cutting plane of histological sections. |
![]() |
62.2 | 27 | * //[[(% style="color:#3498db" %)VisuAlign>>doc:.Image registration to reference atlas using QuickNII.WebHome]]//(%%) is then used for non-linear alignment of the reference-atlas slice to the section image. |
![]() |
36.2 | 28 | * (% style="color:#2980b9" %)//Nutil//(%%) enables image [[transformations>>doc:.1\. Preparing the images.WebHome]], in addition to [[quantification and spatial analysis>>doc:.4\. Quantification and spatial analysis with Nutil.WebHome]] of features by drawing on the output of //ilastik// and //QuickNII//. |
![]() |
1.1 | 29 | |
![]() |
62.2 | 30 | In combination, the tools facilitate semi-automated quantification, eliminating the need for more time-consuming methods such as stereological analysis with manual delineation of brain regions. |
![]() |
9.1 | 31 | |
![]() |
51.1 | 32 | [[[[image:Youtube_QUINT.PNG||height="282" style="float:left" width="500"]]>>https://www.youtube.com/watch?v=8oeg3qTzLnE]] |
![]() |
14.1 | 33 | |
![]() |
31.1 | 34 | |
35 | |||
36 | |||
37 | |||
38 | |||
39 | |||
40 | |||
41 | |||
42 | |||
![]() |
44.1 | 43 | |
44 | |||
45 | |||
46 | |||
![]() |
45.1 | 47 | |
![]() |
43.2 | 48 | QUINT workflow video |
![]() |
30.2 | 49 | |
![]() |
52.1 | 50 | == (% style="color:#c0392b" %)**Workflow highlights**(%%) == |
![]() |
14.1 | 51 | |
![]() |
55.1 | 52 | (% class="box successmessage" %) |
53 | ((( | ||
![]() |
62.2 | 54 | The semi-automated QUINT workflow uses open-access software that can be operated without any scripting knowledge. |
![]() |
55.1 | 55 | ))) |
![]() |
15.1 | 56 | |
57 | ((( | ||
![]() |
55.1 | 58 | (% class="box successmessage" %) |
59 | ((( | ||
![]() |
62.2 | 60 | Because the quantifications are performed in regions defined by a reference atlas, the region definitions are standardised, allowing comparisons of data from different laboratories. |
![]() |
55.1 | 61 | ))) |
![]() |
15.1 | 62 | |
63 | ==== (% style="color:#c0392b" %)**References**(%%) ==== | ||
64 | |||
![]() |
57.1 | 65 | * Yates SC et al. (2019) QUINT: Workflow for Quantification and Spatial Analysis of Features in Histological Images From Rodent Brain. Front. Neuroinform. 13:75. doi: [[10.3389/fninf.2019.00075>>https://www.frontiersin.org/articles/10.3389/fninf.2019.00075/full]] |
![]() |
53.2 | 66 | * Groeneboom NE, Yates SC, Puchades MA and Bjaalie JG (2020) Nutil: A Pre- and Post-processing Toolbox for Histological Rodent Brain Section Images. //Front. Neuroinform.// 14:37. doi: [[10.3389/fninf.2020.00037>>https://www.frontiersin.org/articles/10.3389/fninf.2020.00037/full]] |
![]() |
56.1 | 67 | * Berg S, Kutra D, Kroeger T, et al. & Kreshuk A (2019) ilastik: interactive machine learning for (bio)image analysis. Nat Methods. 16:1226-1232. doi: [[10.1038/s41592-019-0582-9>>https://www.nature.com/articles/s41592-019-0582-9]] |
![]() |
54.1 | 68 | * ((( |
69 | Puchades MA et al. (2019) Spatial registration of serial microscopic brain images to three-dimensional reference atlases with the QuickNII tool. PlosOne. 14(5): e0216796. doi: [[10.1371/journal.pone.0216796>>https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216796]] | ||
70 | ))) | ||
71 | |||
![]() |
58.1 | 72 | ==== ==== |
![]() |
14.1 | 73 | ))) |