Version 71.1 by puchades on 2021/12/07 10:30

Hide last authors
puchades 63.1 1 (% class="box infomessage" %)
2 (((
sharoncy 69.1 3 ==== Online documentation ====
puchades 63.1 4
sharoncy 65.1 5 [[QuickNII user documentation>>https://quicknii.readthedocs.io/en/latest/index.html]]
puchades 63.1 6
sharoncy 65.1 7 [[VisuAlign user documentation>>https://visualign.readthedocs.io/en/latest/index.html]]
puchades 63.1 8
sharoncy 65.1 9 [[Ilastik user documentation>>https://nutil.readthedocs.io/en/latest/Ilastik.html]]
puchades 63.1 10
sharoncy 65.1 11 [[Nutil user documentation>>https://nutil.readthedocs.io/en/latest/index.html]]                                                                   
12 )))
13
14
sharoncy 66.1 15 [[image:QUINT_workflow_Plaques.png||height="470" style="float:left" width="1277"]]
sharoncy 7.1 16
sharoncy 66.1 17 == ==
18
19 == ==
20
21 == ==
22
23 == ==
24
25 == ==
26
27 == ==
28
puchades 49.1 29 == (% style="color:#c0392b" %)**Description**(%%) ==
sharoncy 8.1 30
annedevismes 62.2 31 **The QUINT workflow enables an atlas-based analysis of extracted features from histological image sections from the rodent brain by using 3D reference atlases. **
sharoncy 1.1 32
annedevismes 62.2 33 **Examples of use are cell counting and spatial distributions, determination of projection areas in connectivity experiments, and exploration of pathological hallmarks in brain-disease models. Integration of various data to the same reference space enables new exploration strategies and reuse of experimental data.**
puchades 50.1 34
annedevismes 62.2 35 The workflow is built on the following open-access software.
puchades 50.1 36
annedevismes 62.2 37 * [[(% style="color:#2980b9" %)//ilastik//>>doc:.3\. Image segmentation with ilastik.WebHome]](%%) allows the extraction of labelled features such as cells, by using machine-learning image segmentation.
puchades 36.2 38 * [[(% style="color:#2980b9" %)//QuickNII//>>doc:.Image registration to reference atlas using QuickNII.WebHome]](%%) generates custom-angle slices from volumetric brain atlases to match the proportions and cutting plane of histological sections.
annedevismes 62.2 39 * //[[(% style="color:#3498db" %)VisuAlign>>doc:.Image registration to reference atlas using QuickNII.WebHome]]//(%%) is then used for non-linear alignment of the reference-atlas slice to the section image.
puchades 36.2 40 * (% style="color:#2980b9" %)//Nutil//(%%) enables image [[transformations>>doc:.1\. Preparing the images.WebHome]], in addition to [[quantification and spatial analysis>>doc:.4\. Quantification and spatial analysis with Nutil.WebHome]] of features by drawing on the output of //ilastik// and //QuickNII//.
sharoncy 1.1 41
annedevismes 62.2 42 In combination, the tools facilitate semi-automated quantification, eliminating the need for more time-consuming methods such as stereological analysis with manual delineation of brain regions.
sharoncy 9.1 43
puchades 71.1 44 [[[[image:Youtube_QUINT.PNG||height="338" style="float:right" width="600"]]>>https://www.youtube.com/watch?v=8oeg3qTzLnE]]
sharoncy 14.1 45
puchades 71.1 46 [[image:Quint tutorial video pic.png||height="370" style="float:left" width="600"]]
puchades 31.1 47
48
49
50
51
52
53
54
55
puchades 44.1 56
57
58
puchades 43.2 59 QUINT workflow video
puchades 30.2 60
puchades 52.1 61 == (% style="color:#c0392b" %)**Workflow highlights**(%%) ==
sharoncy 14.1 62
puchades 55.1 63 (% class="box successmessage" %)
64 (((
annedevismes 62.2 65 The semi-automated QUINT workflow uses open-access software that can be operated without any scripting knowledge.
puchades 55.1 66 )))
sharoncy 15.1 67
68 (((
puchades 55.1 69 (% class="box successmessage" %)
70 (((
annedevismes 62.2 71 Because the quantifications are performed in regions defined by a reference atlas, the region definitions are standardised, allowing comparisons of data from different laboratories.
puchades 55.1 72 )))
sharoncy 15.1 73
74 ==== (% style="color:#c0392b" %)**References**(%%) ====
75
puchades 57.1 76 * Yates SC et al. (2019) QUINT: Workflow for Quantification and Spatial Analysis of Features in Histological Images From Rodent Brain. Front. Neuroinform. 13:75. doi: [[10.3389/fninf.2019.00075>>https://www.frontiersin.org/articles/10.3389/fninf.2019.00075/full]]
puchades 53.2 77 * Groeneboom NE, Yates SC, Puchades MA and Bjaalie JG (2020) Nutil: A Pre- and Post-processing Toolbox for Histological Rodent Brain Section Images. //Front. Neuroinform.// 14:37. doi: [[10.3389/fninf.2020.00037>>https://www.frontiersin.org/articles/10.3389/fninf.2020.00037/full]]
puchades 56.1 78 * Berg S, Kutra D, Kroeger T, et al. & Kreshuk A (2019) ilastik: interactive machine learning for (bio)image analysis. Nat Methods. 16:1226-1232. doi: [[10.1038/s41592-019-0582-9>>https://www.nature.com/articles/s41592-019-0582-9]]
puchades 54.1 79 * (((
80 Puchades MA et al. (2019) Spatial registration of serial microscopic brain images to three-dimensional reference atlases with the QuickNII tool. PlosOne. 14(5): e0216796. doi: [[10.1371/journal.pone.0216796>>https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216796]]
81 )))
82
puchades 58.1 83 ==== ====
sharoncy 14.1 84 )))